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Summary

The Ranque-Hilsch vortex tube is a device that divides a flow of compressed gas into
two separate streams, one of which is warmer than the inlet gas, while the other is cooler.
No external power source, other than the compressor that provides the inlet air, is em-
ployed. This dissertation investigates the seemingly paradoxical transfer of energy that
must occur from the cold outlet gas to the warm outlet gas.

Rotating flows in general, and the Ranque-Hilsch vortex tube in particular, have been
the subject of much study. The first objective of the dissertation is to collate the available
information, and attempt to draw some preliminary conclusions as to the likely nature
of the flow within the Ranque-Hilsch tube. This is a particularly important matter, as
progress in understanding the tube has been inhibited by the fragmented nature of many
of the works.

An experimental investigation of three Ranque-Hilsch tubes establishes some gen-
eral results that characterise the thermal separation. The internal flow is examined in
more detail, although practical difficulties limit the utility of the results. Measurements
of the acoustical disturbances generated by an operating tube provide no evidence in
support of an existing theory that attributes the energy transfer to them.

Computational fluid dynamic techniques are applied to the Ranque-Hilsch tube both
to assess their potential in such calculations, and with the hope of gaining further insight
into the internal flow. The fluid mechanics are dealt with by an incompressible vorticity-
streamfunction solver, while the thermal solutions take some account of compressibility
effects. The output of the code is adequate, but further work is required to improve its
performance for use as a Ranque-Hilsch tube design tool.

In the light of the numerical and experimental results, some tentative conclusions are
drawnregarding the energy transfer mechanism at work within the vortex tube. A semi-
empirical model relating the thermal performance of the tube to the applied pressure
ratio and the mass fraction of gas leaving through the cold exit is presented. The model
employs only analytic expressions to simplify its later use in an investigation of possible
applications.

The potential for use of a vortex tube in cooling applications is assessed. Particular
attention is applied to gas liquefaction. It is deduced that the performance of the vortex
tube must be improved for its realistic use as the sole source of cooling in an air liquefier.
There is scope for the vortex tube to assist in the operation of conventional techniques,
such as the Linde process, and to be the sole source of cooling for gases more easily li-
quefied than air.

It is confirmed that the radial mass separation effects reported by a number of work-
ers are produced by simple centrifugation. Using this information, the potential of the
Ranque-Hilsch vortex tube for use in uranium enrichment duties is studied, and found
worthy of further investigation.



Contents

1 Introduction

1.1
1.2
1.3

14
1.5

21
22

23

24

25

The Ranque-Hilsch Vortex Tube . . . . . ... ... ... ... .. ....
Background . . . .. ...
Thermodynamics : The First and Second Laws . . . . . .. .. ... ...
131 FirstLaw Analysis . . . . .. .. .. ...
132 Second Law Analysis . . .. ... ... ... ............
Mixture (Isotopic) Separation . . . . .. . ... ... ... ... ......
Preview of Thesis . . . . . . . . . . . . . . .. ..

Review of The Literature

Introduction . . . . ...
Fluid Mechanics of Rotating Flows . . . . . .. ... .. ... ... ....
221 Governing Equations and Co-ordinate Systems . . . . .. .. ..
2.2.2 Simple Solutions of the Swirl Equation . . . ... ... ... ...
2.2.3 Non-Dimensional Parameters : Ekman and Rossby numbers . . .
224 The Taylor-Proudman Theorem . . .. .. ... ..........
225 EkmanlLayers . .. ... .. .. ... ... ... ...
22.6 Rotating Flow in Cylindrical Ducts . . . .. ... ... ... ...
2.2.7 Periodic Disturbances in Rotating Flows . . . .. ... ... ...
228 Computation of Rotating Flows . . . . ... ... ... ... ...
The Ranque-Hilsch Vortex Tube . . . . . ... ... ... ... ......
23.1 Some Remarks on the Literature . . . . ... .. ... ... ....
232 BasicAnalysis . .. ... ... ... ... . 0
233 Experimental Studies . . .. .. ... ... ... .. L.
234 Theoretical Studies. . . . .. ... ... oL
23.5 Computational Fluid Dynamics Studies . . . . . .. .. ... ...
2.3.6 Mixture Separation — Centrifugation Effects . . . . . .. ... ...
Other Relevant Phenomena . . . . . .. ... ... ... ... .......
241 The Eckert-Weise Effect . . . . . ... ... ... .. ... ....
242 Temperature AnomaliesinStars . . . . .. ... ... .......
Discussion . . . . . .. .. ..
2.5.1 On the Nature of the Ranque-Hilsch Effect . . . . ... ... ...

\%

O CO NI O O U1 4 =



CONTENTS vi

2.5.2 The Comparison of Temperature Distributions from Uniflow and

Counterflow tubes . . . . . . . . . . .. ... 43

2.6 Implications for Investigations of the Ranque-Hilsch Vortex Tube . ... 43
27 Closure . . . . . . . . . e 44
3 Preliminary Investigations and Experiments 45
31 OpeningRemarks . . . ... ... ... ... ... ... ... ... 45
3.2 Dimensional Analysis . . . ... ... ... ... ... 46
321 Background . ... ... ... .. oo 46

322 Analysis ... ... ... 47

33 TheCUED Vortex Tubes . . . . . . . . . . . . . . . .. ... ... ..... 52
3.4 Basic Measurements . . . . . . . . . .. e 54
341 Background . ... ... ... ... o 54

3.42 Description of Equipment . . . . . ... ... 0L 55

3.4.3 Essential Characteristics . . . . . . . . . .. . ... ... .. .... 56

344 Performance and Cold Mass Fraction. . . . . ... ... ...... 59

3.45 Axial Wall Temperature Variations . . . . . ... ... ... .... 62

35 FlowFieldMapping . . . . ... ... ... ... .o 64
35.1 Background . .............. ... ... .. 64

3.5.2 Description of Equipment . . . . ... ... ... ... .. 64

353 AnalysisofErrors . . .. .. ... ... ... 0L 65

354 Results . . . . . . 67

3.6 Acoustical Measurements . . . . . ... ... L L 76
3.6.1 Background . .............. ... . ... ... ... 76

3.6.2 Description of Equipment . . . . . ... ... 0L 84

363 Results . . . . . . . .o 86

3.7 DiscusSion . . . . . . ... e e 93
371 Scope . . ... 93

3.7.2 External Measurements . . . . . . . . . ... ... ... ... ... 94

3.7.3 Internal Measurements . . . . . .. .. ... ... ... .. .... 95

3.8 Closure . . . . . . . . . e 95
4 Computation of Ranque-Hilsch Tube Type Flows 97
41 Objectives . . . . . . .. 97
42 PhysicalModelling . . . . . ... ... .. o oo 98
421 Assumptions and Simplifications . . . ... ... ... 98

42.2 The Vorticity-Streamfunction Formulation . . . . ... ... ... 100

423 TheSwirl Equation . . ... ... ... ... ............ 103

424 TheEnergy Equation . ... ... ... ... ............ 104

43 TurbulenceModelling . . . . .. .. ... ... ... ... ... ... ... 105
431 Necessity . . . . .. ... .. 105

432 The Two-EquationModel . . . . . ... ... ... ... .. .... 105

43.3 Modifications of the Two-Equation Model . . . . ... ... ... 106



CONTENTS vii

4.4 Numerical Technique for Through-Flow Calculations . . . ... ... .. 107

441 The Nature of the Computational Problem . . . .. .. ... ... 107

442 Discretisation . . . . . . . . .. e 107

443 Gauss-Siedel Iteration . . . . .. .. . ... ... ... ... ... 112

444 Velocity Calculations . . . . ... ... ... .. .. ........ 113

445 Pressure Calculations . . . . ... ... ... .. ... ....... 113

45 CodeImplementation . . . ... .. .. ... ... ... ... . ... . 113

451 Outline . .. .. . . . . . 113

452 Stability . . . ... 115

453 Convergence Criterion . . . . ... .... ... .......... 116

4.6 Verification of the Through-Flow Code . . . . ... .. ... ... .... 116

461 OvVerview . . . . . . . e e 116

4.6.2 Driven Cavity Laminar Benchmark . . ... .. ... ... ... .. 117

4.6.3 Rotating Pipe-Flow Laminar Benchmark . . . . ... ... .. .. 117

464 Turbulent Pipe-Flow Benchmark . . . . ... ... ... ... ... 118

4.6.5 Verification of the Energy Equation . . ... ... ... ... ... 119

47 Vortex Tube Computations . . . .. .. ... ... ... .. ........ 119

471 OVerview . . . . . . . e e 119

472 Boundary Conditions . . . . ... ... ............... 119

473 InletConditions . . . .. . . .. . . . . ... ... 124

474 Grid Considerations . . . . . . . . . . . ... ... 125

4.8 Results for Uniflow Tubes . . . . . . . . .. . . ... . ... ... ..... 126

49 Results for Counterflow Tubes . . . . . . . .. ... .. ... ....... 128

410 Discussion . . . . . . .. e e 128

411 Closing Remarks . . . . .. ... ... ... ... ... .. 134

5 Mechanisms of Energy Transfer 135

51 Introduction . . . . .. . . . . . . 135

52 Review . . . . . e e 135

52.1 The Ranque-Hilsch Phenomenon . . ... ... ... ... ... .. 135

522 TheEvidence . . . . . . . . . . . . .. ... 136

53 TheEnergy Equation . .. ... .. ... ... .. ............. 138

53.1 Terms in the Energy Equation . . ... .. ... .......... 139

54 ApplicationtoData . . .. ... ... ... ... Lo 143
54.1 Magnitude of Radial Velocity — Departures from Simple Radial Equi-

Librium . . . . . .. 143

54.2 Terms in the Dissipation Function . . . .. ... .. .. ... ... 145

5.4.3 The Influence of Turbulent Convection . . ... .. .. ... ... 148

544 Magnitudes of Terms in the Energy Equation . . . . . . .. .. .. 149

55 Analysis. . . . . . ... 154

5.5.1 Turbulent Conduction Process — Radial Terms Only . . . . . . .. 154

5.5.2 The Turbulent Conduction Process - Radial and Axial Terms . . . 161

56 Conclusions. . . . . . . . . .. 171



CONTENTS viii

6 A Model of Ranque-Hilsch Tube Performance 174
6.1 Introduction . . .. . . . . . . . ... 174
6.2 A Model of Ranque-Hilsch Tube Performance . . ... .. .. ... ... 174
6.3 Assumptions . . . . .. .. 175
6.4 Limitations . . . . . . . . . . .. 178
6.5 Reformulation . .. .. .. . .. . ... 178
6.6 The Influence of the Cold Mass Flow Fraction. . . . . . .. ... ... .. 179
6.7 The Influence of the PressureRatio . . . . . .. ... ... ... ...... 182
6.8 The Final Relationship . . . . .. .. .. ... ... ............. 189
6.9 Departures fromIdeality . ... ... ... ... ... ... ... .. 190

6.9.1 Departures from the Formof f, (p.) . . . . . ... ... ... ... 190
6.9.2 Non-Conformance to Variation of Performance with Pressure Ratio 191

7 Applications of the Ranque-Hilsch Tube 193
701 Overview . . .. .. 193
7.2 Simple Heating and Cooling Applications . . . . . . .. .. .. ... ... 194

72.1 Thermal Capabilities . .. ... ... ... ... .......... 194
722 Applications . . .. .. ... o 196
73 GasLiquefaction . . . . .. ... ... .. 196
7.3.1 Principles of Liquefaction . . . . . . .. ... ... ... ... .. 196
7.3.2 Liquefaction in the Vortex Tube . . .. ... ... ... ... ... 198
74 Vortex Tube Cascades for Liquefaction . . . . . ... ... ... ... ... 200
741 General Principles . . . . .. ... ... ... ... ... ... 200
742 SimpleCascade . . ... ... ... .. ... ..., . 205
743 FirstRefluxCascade . . . . . . . .. .. ... . ... . ... . ... 209
744 Second RefluxCascade . . . .. ... ... . ... ... . ..... 214
745 Discussion of Performance . . . .. .. ... .. .. ... ..... 217
74.6 Performance Required for Liquefaction . . . . ... .. ... ... 218
74.7 Optimisation of a Liquefying Cascade . . . . . . .. .. .. .. .. 219
7.5 An Investigation of Mixture Separation in the Vortex Tube . . . . . . .. 228
75.1 Proposed Mechanism and Model . .. ... ............ 228
7.5.2 Comparison of Model with Experimental Data . . . . . .. .. .. 231
7.6 Application of the Vortex Tube to Uranium Enrichment . . . . . . . . .. 236
77 Conclusions . . . . . . . . . e 237

8 Conclusions and Recommendations for Further Work 238
81 Review . . . . . . e e 238
82 Conclusions . . . . . . . . . . 239

8.2.1 Energy Transferin Vortex Tubes . . . . ... ... ... ...... 239
8.2.2 Modelling of Vortex Tubes . . . . ... ... .. .......... 242
8.2.3 Applications of Vortex Tubes . . . . . . ... ... ... ...... 242
8.3 Recommendations for FurtherWork . . . . . . ... ... ... ...... 242

83.1 EnergySeparation . . . ... ... ... ... 242



CONTENTS ix

832 CFD . . . . . 244
83.3 GasLiquefaction . . . .. .. ... oL 244
83.4 Mixture Separation . . . .. ... ... ... 245
A Heat Transfer From the Cylindrical Wall 246
A1l Introduction . . . . . . . . . . . 246
A2 Analysis. . . . ... ... 246
A3 Evaluation . .. .. .. . . ... 247
B Assessment of Errors and Calibration of the Intrusive Measurement Probes 249
B.1 BasicPrinciples . . . . . .. ... ... .. 249
B.2 Procedure and Results forProbes . . . . . . . . . ... ... ... ... .. 250
B2.1 Equipment . .. .. ... ... ... 0o 250
B.2.2 Combination of Repeated Readings . . . . . ... ... ... ... 251
B.2.3 Stagnation Pressure Probe . . . . ... ... ... ... ...... 254
B.24 Stagnation Temperature Probe . . . . . ... ... ... ... ... 254
B.2.5 Static Pressure Probe . . . . . . .. .. ... ... ... .. .... 255
B.3 Estimates of Other Errors . . . . . . . . . . . . . ... ... ... ..... 255
B.4 Correlation Coefficients . . . . . . . . . .. . . .. .. ... 256
C The Numerical Tests Carried Out on the Code 258
C.1 Introduction . . . . . . . . . . . . . 258
C.2 The Driven Cavity Laminar Benchmark . . . . ... ... ... ... ... 258
C.3 The Rotating Pipe Flow Laminar Benchmark . . . ... .. .. ... ... 261
C.4 The Turbulent Pipe Flow Benchmark . . . . .. ... ... ... ... .. 264
C5 Conclusions . . . . . . . . . . s 267

D Outline of a Proposed Experiment for Further Investigation of Centrifugation
Effects within the Vortex Tube 268
D.1 Introduction . . . . . . . . . . . . . 268
D2 Concept . . . . . . . .. 268

E A Novel Method for Estimating the Velocity Distribution Across the Radius of
a Vortex Tube 272
E1l Background . . . ... ... ... ... .. ... 272
E2 Theory . .. .. .. .. . . ... 273
E3 MethodandResults . . . . .. . . . .. .. .. . ... ... 276
E.4 Further Evaluation of the Technique . . . . . . ... ... ... ...... 279
E.4.1 DataFromNearthelnlet . . . . .. .. ... ... ... ...... 279
E4.2 DataFromNeartheValve. . . . .. .. ... ... ... ...... 279
E5 Conclusion . . . . . . . . . .. 282

Bibliography 284



List of Figures

1.1
1.2
1.3
14

21
2.2
23
24
25
2.6

2.7

3.1
32
33
34
3.5
3.6

3.7

3.8

39

3.10

A counterflow vortex tube. . . . .. .. .. ... ... L. 2
Diagrammatic sketch of the flow pattern in a counterflow tube. . . . . . . 2
A uniflow vortextube. . . . . .. ... 3
The vortex tube thermodynamic system. . . . ... ... ... ...... 8
The co-ordinate system employed. . . . . . . ... ... ... ....... 12
A sketch of the velocity distribution in a Rankine vortex. . . . .. .. .. 15
A sketch of the flow pattern in a counterflow vortex tube, based on a sug-

gestion by Van Deemter [1]. . . . . . .. ... ... ... ... 18
A ‘bubble’ breakdown. . . ... ... 22
A’spiral’ breakdown. . . . ... .o oo o o 23
Effective energy separation as a function of axial distance from the inlet

plane for Brunn’s counterflow tube. . . . . .. ... ..o 33
Effective energy separation as a function of axial distance from the inlet

plane for Lay’s uniflow tube. . . . . .. ... ..o 34
Photograph of the vortex tube apparatus. The plastic tube (C) and the 26

mm diameter brass tube (A) are visible. Tube B has been removed for clarity. 52

Drawing of the CUED vortex tubes. . . . . .. ... ... ... ...... 53
Raw performance data for the 26 mm tube with a 7 mm diameter orifice. =~ 56
The results of the flow visualisation. . . . . . . ... ... ... ...... 58
The geometry employed to estimate the flow direction from the streakline
results. . . . .. 59
The ‘performance’ of the 26 mm diameter vortex tube as a function of the
cold outlet mass flow fraction. . . . . . .. . ... .. ... ... .. ... 60
The “performance’ of the 18 mm and 26 mm diameter vortex tubes in geo-

metrically similar configurations, as a function of the cold outlet mass flow

fraction. . . . . . . . Lo 61
Variation of the temperature of the cylindrical wall with distance from the
orifice, for the 18 mmtube. . . . . . . . . . . ... ... ... ... 62
Normalised cylindrical wall temperature axial distributions for the 18 mm
and 26 mmvortex tubes. . . . ... ... L 63
The stagnation temperature field in tube A with a 7.5 mm orifice, operated
at pressureratioof P, /P. =24. . . . . ... ... .. 70



LIST OF FIGURES

3.11

3.12

3.13

3.14

3.15

3.16
3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

4.1
42
4.3
44

4.5
4.6
47
4.8
49

The stagnation pressure field in tube A with a 7.5 mm orifice, operated at
areservoir pressure of P, /P. =24. . . . .. ... ..
The static temperature field in tube A with a 7.5 mm orifice, operated at
pressure ratioof P;,,/P. =24. . . . . .. ...
The static pressure field in tube A with a 7.5 mm orifice, operated at a
reservoir pressure of P, /P. =2.4. . . . ... ...
Swirl velocity profiles in tube A with a 7.5 mm orifice, operated at a reser-
voir pressure of P, /P, =24, . . . . ...
Axial velocity profiles in tube A with a 7.5 mm orifice, operated at a reser-
voir pressure of P, /P, =24, . . . . ...
The layers identified by Kurosaka. . . . . . . ... ... ... ... ....
The spectral density of the acoustic signal obtained by Kurosaka from a
uniflow vortex tube. . . . . . .. ..
The spectral density of the acoustic signal obtained by Kurosaka from a
uniflow vortex tube when fitted with tuned acoustic suppressors.

Graph illustrating the behaviour of the energy separation, and the acous-
tical output from Kurosaka’s tube as the excitation (whistling) frequency
isincreased. . . . . . . ...
Power spectral density of a compressor signal. . . . .. .. .. ... ...
The power spectral density of the acoustic disturbances in the 26 mm tube,
measured nearthevalve. . . .. . ... .. .. ... ... ... ...,
The power spectral density of the acoustic disturbances in the 26 mm tube,
measured near the inletnozzles. . . . . .. .. ... ... ... ......
The power spectral density of the acoustic disturbances in the 26 mm tube,
measured near the coldoutlet. . . . . . ... ... ... ... .. .....
The power spectral density of the acoustic disturbances in the 26 mm tube
run without an orifice plate, measured near the cold outlet. . . . . . . ..
Close up of the power spectral density of the acoustic disturbances in the
26 mm tube run without an orifice plate, measured near the cold outlet,
for frequenciesupto2kHz. . . . . ... .. oo oo
The swirl velocity distribution near the outlet of the cold tube. . . . . . .

The finite control volume in cylindrical co-ordinates. . . . . . . .. .. ..
Flow diagram for the vorticity-streamfunctioncode. . . . . . . .. .. ..
Outline of the driven cavity problem. . . . .. ... ... ... ... ..
The computational domain used to verify the performance of the vorticity-
streamfunction solver in cylindrical co-ordinates with swirl. . . . . . ..
The geometry employed for uniflow calculations. . . . .. .. ... ...
The geometry employed for counterflow calculations. . . . . . .. .. ..
The computational grid. . . . . . .. .. ... ... ... ... ... ... .
Uniflow tube flow calculation, withnoswirl. . . . . .. .. .. ... ...
Uniflow tube calculation with an inlet swirl number of 10.4, and unity tur-
bulent Prandtl number. . . . . . . . .. ... L

xi

72

74

75
77



LIST OF FIGURES xii

4.10

411
412

51

52

53

54

55

5.6

57

58

59

5.10

5.11

512

5.13

5.14

5.15
5.16

517

5.18

5.19

5.20

Uniflow tube calculation with an inlet swirl number of 10.4, and a turbu-

lent Prandtl numberof 0.2. . . . . . . . .. .. ... ... .. ... 130
The effect of the Richardson number correction. . . . . . ... ... ... 131
Counterflow tube calculation with an inlet swirl number of 10.4, and a
cold fractionof . =04. . . . . . . .. 132
The motion of a fluid particle caught in an eddy, through the radial tem-
perature and pressure gradients. . . . . . ... ... L 141
The magnitude of the departure from simple radial equilibrium at stations
in the 26 mm diameter vortex tube. . . . . . . ... ... ... .. ... 144
The magnitude of the radial velocity relative to that at a radius of 0.012 m,
at z = 0.05 m in the 26 mm diameter vortex tube. . . . . . . .. . ... .. 145
Terms in the dissipation function at z = 0.05 m, in the 26 mm diameter
vortextube. . . . . ... L 146
Terms in the dissipation function at z = 0.5 m, in the 26 mm diameter vor-
textube. . . . ... 147
Terms in the dissipation function at z = 0.6 m, in the 26 mm diameter vor-
textube. . . . ..o 147
The potential for turbulent heat conduction radially outwards at three sta-
tions in the 26 mm diameter vortex tube. . . . . . . .. .. .. ... ... 149
Terms in the energy equationat 2 =0.05m. . . . . . ... ... ... ... 150
Terms in the energy equationat 2 =02m. . ... ... .. ........ 151
Terms in the energy equationat z =0.6m. . . ... .. ... ....... 152
Comparison of solutions and experimental values for Lay’s data, table 2
station 1. . . . . . . . 157
Comparison of solutions and experimental values for Lay’s data, table 2
station 6. . . . . . e 158
Comparison of solutions and experimental values for counterflow data,
z2=005m. . .. ... 159
Comparison of solutions and experimental values for counterflow data,
2=06mM. . . .. 160
The axial velocity profile. . . . . ... ... ... ... ... ... .. 165
Axial variation of the stagnation temperature at four radial positions, cal-
culated from the reduced energy equation including axial terms. . . . . . 166
Stagnation temperature profiles at stations close to the inlet, calculated
from the reduced energy equation including axial terms. . . . . . .. .. 167
Stagnation temperature profiles at stations spaced along the axis, calcu-
lated from the reduced energy equation including axial terms. . . . . . . 168
Swirl velocity profiles at stations along the tube axis, calculated using the
simplified method. . . . . . .. ... .. ... . oo 169

Axial variation of the static temperature at four radial positions, calcu-
lated from the reduced energy equation including axial terms. . . . . . . 170



LIST OF FIGURES xiil

521

522

6.1
6.2
6.3
6.4
6.5
6.6

7.1
72
73
74
7.5
7.6
77
7.8
79
7.10
711
7.12
7.13
7.14
7.15
7.16

717
7.18
7.19
7.20

721
7.22

7.23
7.24

7.25
7.26

Static temperature profiles at stations spaced along the axis, calculated from

the reduced energy equation including axial terms. . . . . .. ... ... 171
Static temperature profiles at stations close to the inlet, calculated from the
reduced energy equation including axial terms. . . . . . .. ... ... .. 172
An ‘ideal’ vortex tube. . . . . . . ... 177
The quartic relation and the dataitmodels. . . . . . ... ... ... ... 180
Comparison between the quartic relation and Stephan’s result. . . . . . . 181
The dependence of the pressure at » = ry on the inlet stagnation pressure. 185
The dependence of 7. /T;,;.: on the pressure ratio. . . . .. .. ... ... 187
Evaluation of the tube constant for six tubes. . . . . . . .. .. ... ... 188
A cyclic work absorbing device. . . . . .. ..o 194
Quasi-cyclic vortex tube refrigerationplant. . . . . . ... ... ... ... 195
Schematic of the Linde process. . . . . . . ... ... ... ... ...... 197
Linde-type gas liquefaction process incorporating a vortex tube. . . . . . 199
Evaluation of the characteristic tube constant for Stephan’s tube . . . . . 201
The shape of a vortex tube cascade. . . . . . . ... .. .. .. ... ... 202
Enthalpy and mass fluxes entering and leaving a cascade. . . . . . . . . . 204
The simplecascade. . . . . ... .. ... ... ... .. .. ... 206
Design curves for the simplecascade. . . . . . ... ... ... ...... 207
The ratio of outlet mass flow to inlet mass flow for a simple cascade. . . . 208
The first reflux cascade. . . . . . . . . . . . . ... ... 210
Design curves for the first reflux cascade. . . . . . ... .. ... ... .. 212
The ratio of outlet mass flow to inlet mass flow for a type 1 reflux cascade. 213
The second reflux cascade. . . . . . . . .. . . .. . ... .. ... .... 215
Design curves for the second reflux cascade. . . . . .. .. .. ... ... 216
The ratio of outlet mass flow to inlet mass flow for a type 2 reflux cascade
operating at the minimum outlet enthalpy ratio. . . ... ... ... ... 217
The enthalpy of saturated liquid and gaseous air as a function of pressure. 220
Maximum outlet flow of liquefied gas for the first reflux cascade. . . . . . 222
Vortex tube cold mass flow fraction for optimal operation of a type one
reflux cascade. . . . . . . . ... 223
Relationship between the production of liquefied air and the vortex tube

cold mass flow fraction for a type one reflux cascade. . . . . ... .. .. 224
Maximum outlet flow of liquefied gas for the second reflux cascade. . . . 225
Vortex tube cold mass flow fraction for optimal operation of a type two
reflux cascade. . . . . . . . ... 226
Relationship between the production of liquefied air and the vortex tube

cold mass flow fraction for a type two reflux cascade. . . . . . .. .. .. 227
Velocity and temperature profiles used to evaluate the mixture separation. 232

The radial oxygen concentration evaluated using the laminar expression. 233
The radial oxygen concentration evaluated using the turbulent expression. 234



LIST OF FIGURES xiv

7.27 Predicted and experimental variation of separation effect with hot flow

mass fraction. . . . . . . .. 235
C.1 Computational domain for the driven cavity problem. . . . . . . ... .. 259
C.2 Result using the vorticity-streamfunction solver to solve the square cavity
benchmark problemona2I1x21grid. . . . . . ... ... ... ... ..., 260
C.3 Benchmark solution to the square cavity problem. Computed on an irreg-
ularly spaced 13x13 grid. . . . . .. ... ... oL 260
C.4 Result using the vorticity-streamfunction solver to solve the square cavity
benchmark problemona91x91grid. . . . . . . ... ... ... ... ... 261
C.5 Definition of the laminar swirling benchmark problem. . . . . .. .. .. 262
C.6 Benchmark solution of the laminar swirling flow problem. Taken from Sil-
vesteretal. [2]. . . . . . . 262
C.7 Calculated solution of the laminar swirling flow problem using a 91x91
regulargrid. . . .. ... 263
C.8 Calculated solution of the laminar swirling flow problem using a 31x31
regulargrid. . . .. ... 264
C.9 Calculated solution of the laminar swirling flow problem using a 31x31
irregulargrid. . . . .. ..o 265
C.10 Variation of calculated axial mass flow rate. . . . . . ... ... ... ... 266
C.11 Comparison of the axial velocity profile provided by the vorticity-streamfunction
solver with the solution of Nikuradse. . . . . . ... ... ... ...... 266
D.1 The illumination arrangement for concentration measurements. . . . . . 270

E.1 Measured variation of stagnation pressure and flow angle across the ra-

dius of the 26 mm diameter vortextube. . . . . . . . .. ... ... ... 276
E.2 First fit to the pressure/angle derived data. . . . . . . ... .. ... ... 277
E.3 Fifth and final fit to the pressure/angle deriveddata . . . . . . .. .. .. 278
E.4 Resultant fit after five iterations, for data from Lay using only the data out-

side the boundarylayer. . . . . . ... ... ... .. ..o 000 280
E.5 Resultant fit after five iterations, for data from Lay using all data up to the

cylindrical wall. . . . . .. ... ... . o 281

E.6 Resultant fit after five iterations, for data from Lay using all data up to the
cylindrical wall. . . . ... ... ... .. o 282



NOMENCLATURE

Nomenclature

Explanitory Note

This section lists most of the nomenclature used in this thesis. On occaision symbols are
used without explanation or with meanings that differ from those here. In such circum-
stances the interpretation of the symbol is given explicity in the text, or should be obvi-
ous from the context. The same is true for symbols given more than one meaning in the

tables below

Note that the convention employed for pressure is that of the Royal Society; specific-

ally it is represented by a capital P.

Upper Case Letters
A Area
D Diameter (of vortex tube)
Diffusion coefficient
F (jw) Fourier tranform of the function f ()
K., Correlation coefficient
L Length of vortex tube
Characteristic length scale
M Mach number
P Static pressure
P Atmospheric pressure
P, P, Partial pressures of components with mole fraction z, y
Py Stagnation pressure
Q Heat transfer
R Ideal gas constant for a particular gas
R Molar (universal) gas constant (8.3143 kJ /kmol K)
Ry Recovery factor
T Static temperature
To Stagnation temperature
Totm Atmospheric temperature
T, Static temperature of the cold stream
T Static temperature of the hot stream
T Temperature drop associated with the Joule-Thomson effect
Tr Recovery temperature
T. Characteristic temperature (in chapter 6)
V Value function
w Work (transfer)
U Characteristic velocity
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Lower Case Symbols

z
T, Y

Speed of sound

Specific heat capacity at constant pressure
Specific heat capacity at constant volume
Orifice diameter

Exponential constant
Frequency

Function

Function of time

Specific static enthalpy

Heat transfer co-efficient
Specific stagnation enthalpy
Square root of -1

Turbulence kinetic energy
Molar mass

Mass flux

Heat flux

Specific entropy

Radial co-ordinate

Outer radius

Time

Radial Velocity

Swirl (circumferential) velocity
Axial velocity

Axial co-ordinate

Mole fraction

Non-Dimensional Groups

Ek
Gr
Pr
Ro
Re
R

S

Ekman number
Grashoff number
Prandtl number
Rossby number
Reynolds number
Richardson number
Swirl number

Bold Face Symbols - Vectors and Tensors

T
Vi

Transformation matrix
Variance matrix for observables

XVi
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y

<N E <o

Variance matrix for results

(Body) force vector

Heat flux vector

Velocity vector

Velocity vector relative to rotating frame
Observables vector

Results vector

Greek Symbols

R

> > D
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Hi

o,

E D= S v

Thermal expansivity

Isentropic exponent ¢, /¢,

Change in

Inlet nozzles effective diameter

Kronecker delta

Turbulent diffusivity, x./p

Turbulent thermal diffusivity, A./p

Circumferential co-ordinate

Thermal conductivity

Effective thermal conductivity, usually equal to the sum
of the laminar and the turbulent conductivities
Dynamic viscosity

Second coefficient of viscosity

Cold mass flow fraction

Effective viscosity, usually equal to the sum of the laminar
and the turbulent viscosities

Joule-Thomson coefficient

Turbulent viscosity

Kinematic viscosity

Density

Turbulent Prandtl number

Turbulent Schmidt number for turbulence kinetic energy transport
Turbulent Schmidt number for turbulent dissipation
Stress tensor

Dissipation function

Generic variable to be solved for

Wetness fraction

Streamfunction

Rotational speed (in radians / s)

Angular frequency

Vorticity
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Subscripts

atm  Evaluated at atmospheric conditions

c Evaluated at the cold exit to the vortex tube

cl Evaluated at the centre-line

cold Evaluated at the cold exit to the vortex tube

E Evaluated at the node to the ‘east’

€ Evaluated at the ‘eastern’ face

f Value for saturated liquid under prevailing conditions
g Value for saturated gas under prevailing conditions
hot Evaluated at the hot exit to the vortex tube

h Evaluated at the hot exit to the vortex tube

mn Evaluated at the (tube) inlet

inlet  Evaluated at the (tube) inlet

i,] Node numbers, in computational work

max  Maximum value

N Evaluted at the node to the ‘north’

n Evaluated at the ‘northern’ face

out Evaluated at the outlet
outlet Evaluated at the outlet

To Evaluated at the outer radius, rg
ref Reference value

S Evaluated at the node to the ‘south’
s Evaluated at the ‘southern’ face
stag ~ Stagnation value

t Turbulent

|14 Evaluated at the node to the “west’
w Evaluated at the ‘western’ face

wall  Evaluated at the wall
Superscripts

A

Unit vector

Time averaged

Fluctuating component
Non-dimensional, or normalised quantity
<> Mean or expected value

!/

*

[k]  Time level, or iteration number in computational work

Other Symbols

F Fourier transform of
F~1 Inverse fourier transform of

Xviii



Chapter 1

Introduction

1.1 The Ranque-Hilsch Vortex Tube

The Ranque-Hilsch vortex tube is a device that separates a flow of gas into two streams
simultaneously, one hotter than the inlet temperature and one cooler. Made even more
remarkable by the absence of moving parts, the device was first conceived by Georges
Ranque [3] in 1933 after he found evidence of a radial temperature gradient in cyclone
separators. There was little interest in the vortex tube until a study by Hilsch [4] in 1946
published numerical data describing its thermal performance, along with some basic

constructional details.

Figure 1.1 shows the essential features of the counterflow vortex tube investigated by
both its progenitors. Air (or in general, the working gas) is introduced into a tube open at
both ends through tangential flow inlets positioned about a quarter of the tube’s length
away from one end. A strongly swirling flow results and the gas proceeds along the tube;
a sketch of the commonly supposed flow pattern is shown in figure 1.2. The outer re-
gions of the flow are found to be warmer than the inlet gas, while gas towards the centre
of the tube experiences cooling. An orifice positioned just ‘behind” the flow inlets sep-
arates the cool central gas, which then exits the tube at the left-hand side as seen in the

diagram. The warm peripheral flow leaves at the right-hand side of the tube, where a

1
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Figure 1.1: A counterflow vortex tube.

Gas inlet Direction of Warm Exit
energy transfer

Cold Exit

Recirculating Flow
Bounding Streamline

Figure 1.2: Diagrammatic sketch of the flow pattern in a counterflow tube.

valve is positioned to allow regulation of the relative quantities of hot and cold gas.

An alternative design for a temperature separating vortex tube, which we will term
the uniflow variant, is shown in figure 1.3. The fundamental aspects of the device are the
same as for the counterflow tube. Its distinguishing features are that the orifice and valve
are combined at one end of the tube, while the other end of the tube, adjacent to the inlet
nozzles, is sealed. Many investigators have suggested that uniflow tubes perform less
well than equivalently proportioned counterflow designs.

It is useful at this stage to consider the magnitude of the temperature differences the

vortex tube can produce. While this is discussed in some detail in the body of the thesis,
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Figure 1.3: A uniflow vortex tube.

a preliminary ‘feel’ for the separation assists in comprehension of much of what follows.
The temperature differences can be substantial. Hilsch, for example, operated a counter-
flow vortex tube 12 mm in diameter on air supplied at approximately 600 kPa and 293
K, to produce a hot stream at 343 K, and a cold stream at 261 K. Hilsch also suggests that
temperature differences as large as +180 K and -70 K compared to the inlet gas can be ob-
tained from a suitably designed' tube driven by air at 1100 kPa. Many other workers give
comparable results, although perhaps unsurprisingly, reduced inlet pressures result in
smaller temperature changes. Apparatus available at Cambridge University Engineer-
ing Department for instance, delivers differences of up to -11.5 K and +8 K when run at
approximately 300 kPa.

What we have in the Ranque-Hilsch tube then, is a device without moving mechan-
ical parts, that converts a gas flow initially homogeneous in temperature, into two sep-
arate flows of differing temperatures. This is surprising. Most “passive’ energy transfer
processes strive towards thermal equilibrium, producing uniformity of thermal energy.
In the Ranque-Hilsch vortex tube, thermal equilibrium appears to represent an inhomo-
geneity of thermal energy.

It is a mistake, of course, to regard the thermodynamic system represented by the

'Hilsch gives few clues as to the actual design of this particular example.
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vortex tube as entirely passive, and devoid of motion. The gas swirling through the tube
at high speed is far from quiescent, and quite capable of performing some kind of work.
Herein must lie the key to comprehension of the phenomenon. How does the swirling mo-
tion of the flow in the Ranque-Hilsch vortex tube provide the impetus necessary to cause energy
to accumulate in gas towards the periphery of the flow, at the expense of gas towards the centre?

Directly or indirectly, it is this question that much of this thesis will address.

Maxwell’s Demon

Before leaving this introduction to the nature of the Ranque-Hilsch tube, it is worth draw-
ing a qualified analogy with Maxwell’s demon [5] [6]. Maxwell imagined an energy sep-
arator consisting of a molecule sized ‘demon’ controlling the trap door separating two
halves of a container filled initially with a homogeneous gas. The demon is able to ob-
serve gas molecules approaching the trap door, and operates it in such a way as to collect
molecules with a kinetic energy above a certain critical level in one half of the box, and
those with lesser energy in the other half. Given sufficient time, the demon manages to
produce a discernible temperature difference between the gas in each half of the box,
seemingly in violation of the Second Law of Thermodynamics.

While the net effects of the Ranque-Hilsch vortex tube and Maxwell’s demon are sim-
ilar, there are a couple of notable points. Firstly, Maxwell’s demon operates on a molecu-
lar, discrete basis. He identifies which molecules are already hot, and which are already
cold, and takes positive action to separate them. There is no suggestion that the Ranque-
Hilsch tube operates directly on a molecular scale, separating already hot, fast moving
molecules from slower cold ones. Rather, all the discussion here will analyse the tube
within the conventional fluid mechanical assumption that the working fluid can be con-
sidered as a continuum. In this sense, the effect of the Ranque-Hilsch tube is to generate
a radial temperature (thermal energy) gradient by inducing the transfer of energy from
the central region of the flow to the periphery, rather than to separate thermal energies by

selective spatial filtering of pre-exisiting hot and cold fluid particles. Nevertheless, the
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term ‘separation” will frequently be used to refer to the effect of the Ranque-Hilsch tube
in this thesis, as it is in the published literature. Care should be taken to bear in mind that
this term is something of a misnomer. It is possible to conceive of vortex tubes operat-
ing under such low pressures that the Knudsen number is significant, and free molecule
analysis becomes appropriate. These flows are outside the scope of this work, except in

so far as they may exhibit behaviour similar to the continuum case.

The second point to draw from Maxwell’s demon is that the thermal separation he
produces is not in violation of the Second Law of Thermodynamics, when proper ac-
count is taken of the mental and physical effort the demon must expend in spotting the
approaching molecules and working the trap door. Here the analogy with the Ranque-
Hilsch tube is very good. As will be discussed later, when proper account is made of
the work needed to operate the tube, the temperature difference it produces is entirely

consistent with classical thermodynamics.

1.2 Background

Since its discovery, the Ranque-Hilsch vortex tube has been a subject of substantial in-
vestigation. In excess of a hundred papers directly addressing the device have been pub-
lished over the last 50 or so years, with many more that could be considered ‘relevant’.
The mechanism underlying the energy transfer from the cold to the hot flow remains elu-
sive, however. There is debate even as to the basic physics of the phenomenon. While
the majority of workers suggest mechanisms based on the interactions of turbulence,
compressibility and shear work (see Deissler and Perlmutter [7] for the most thorough

analysis), there is a significant school of thought that cites acoustic effects as responsible
(Kurosaka [8]).

One obstacle to investigations of the Ranque-Hilsch tube is the lack of any substantial
published literature review since Westley [9] in 1954. An important task early in any

study of the vortex tube must be to draw together the mass of literature.
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1.3 Thermodynamics: The First and Second Laws

At first sight, the vortex tube may appear to represent an impossible phenomenon, vi-
olating some fundamental laws of thermodynamics. The reader should rest assured,

however, that the fabric of Physics remains intact.

1.3.1 First Law Analysis

The vortex tube satisfies the First Law of Thermodynamics. Energy is conserved. In-

deed, we can write

(R0)inter = He (ho)oorg + (1 — pe) (o), (1.1)

where p. = W’j—n is the fraction of the inlet mass flow leaving through the cold exit, and
ho represents the stagnation enthalpy. In many cases, especially with long vortex tubes,
the flow velocities at the exits to the tube are small and their influence on the stagna-
tion enthalpy may be neglected. For an ideal gas, the conservation equation may now
be written

e, To = pecyTe + (1 — pe) e, Th (1.2)

where T; represents the stagnation temperature of the inlet gas, 7, the static temperature
of the cold stream and 7', the static temperature of the hot stream. When rearranged with
tc as the subject, equation (1.2) gives a convenient means of estimating the cold mass
flow fraction from temperature readings alone.

For a perfect gas, with a specific heat capacity ¢, independent of thermodynamic state,
equation (1.2) may be simplified by cancelling the ¢, from each term. With a real gas,
account must be taken of the dependence of enthalpy on pressure, that, is the Joule-
Thomson effect, and then equation (1.2) is invalid. A revised relationship might be writ-
ten

To = pe (To = Tp) + (1 — pe) (Th + Te) (13)

where T, represents the influence of the Joule-Thomson effect. Over the range of pres-
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sure changes encountered in this thesis, generally less than 670 kPa, Joule-Thomson cool-
ing in air is relatively small at less than 2 K. Since much of the discussion deals with air,
the Joule-Thomson effect will be ignored except where noted explicitly. Moreover, gases
will in general be treated as perfect throughout this work and thence immune to Joule-

Thomson cooling.

1.3.2 Second Law Analysis

The Clausius Statement of the Second Law of Thermodynamics® reads

It is impossible to construct a system which will operate in a cycle and transfer
heat from a cooler body to a hotter body without work being done on the system by

the surroundings.

To reconcile the vortex tube with the Second Law, we have to broaden our outlook and
recognise that the closed system we should consider consists of a compressor and a vor-
tex tube, as shown in figure 1.4. The arrangement pictured is quasi-cyclic in as much as
the outlet air has been returned to its inlet pressure, specifically, atmospheric pressure.
If the two outlet streams were mixed, the resultant gas would have a uniform enthalpy
equal to that of the inlet gas, assuming that the heat transfer from the compressor was
sufficient to cool the newly compressed gas back to ambient temperature. Note that we
assume the working gas is perfect here. Thus the open system pictured in bold could
be simply converted to closed cycle operation with no effect on its performance by ad-
dition of the equipment drawn lightly. The outlet gas is mixed, passed through a heat

exchanger if necessary, and returned to the compressor.

With such a scheme, the Second Law is obviously satisfied. Work is done to cause the

transfer of heat from the cold gas stream to the hot stream.

2Gee, for example, Rogers and Mayhew [10].
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Figure 1.4: The vortex tube thermodynamic system.

1.4 Mixture (Isotopic) Separation

There are reports of detectable separation of components of differing mass within the

Ranque-Hilsch tube, such that it might be possible to employ vortex tubes as mixture or

isotope separators. As with the temperature separation effect, there has been consider-

able debate as to the mechanism responsible for this mass based separation. In this case,

a ‘key’ into the problem is more obvious; the strongly swirling nature of the flow in the

tube suggests that straightforward centrifugation is likely to be the underlying mechan-

ism. While a couple of experimental studies have found evidence that concurs with this

hypothesis, there is still plenty of scope for further analysis.
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1.5 Preview of Thesis

In the next chapter, we will begin our study of the vortex tube by reviewing the sub-
stantial quantity of literature dealing with the device. After attempting to draw some
preliminary conclusions from the mass of ideas discussed, we will move on to consider
a series of experiments conducted with a vortex tube apparatus in chapter 3. A number
of empirical observations are made from the results, and some insights into the likely
mechanism of energy separation are gained.

Chapter 4 examines the development of a computer based Navier-Stokes solver that
attempts to simulate flow in the Ranque-Hilsch tube. While the code developed would
benefit from considerable further attention, the program reaches a level of sophistication
sufficient to allow useful calculations of Ranque-Hilsch tube flows and provides some
enlightenment as to the mechanism of energy transfer. The difficulties peculiar to com-
putations of vortex tube flows and the steps taken to ensure the reliability of the code are
also mentioned briefly.

In chapter 5, there is some further, more analytical, investigation of the energy trans-
fer mechanisms highlighted by the experimental and computational work. By chapter
6 it is possible to present an empirical model to represent the performance of the vortex
tube.

With chapter 7, attempts are made to employ the new-found knowledge of the Ranque-
Hilsch vortex tube in the investigation of two potential applications. Attention is fo-
cussed primarily on an area that appealed to Ranque, specifically the utility of the vor-
tex tube in gas liquefaction processes. Also presented is a brief investigation of mixture
separation processes in the vortex tube, along with some deductions regarding the ap-
plication of the vortex tube in uranium enrichment processes.

The last chapter draws together the information in the earlier chapters, and formu-
lates some overall conclusions regarding the issues considered in this thesis. Suggestions

for areas worthy of further study are made.



Chapter 2

Review of The Literature

2.1 Introduction

We will begin by taking a general review of the features of confined rotating flows, high-
lighting those aspects particularly relevant to the vortex tube. Next the review will be
narrowed to studies of the Ranque-Hilsch tube specifically. The material is divided broadly
into three sections considering firstly experimental, and then theoretical investigations
of the thermal effects within tubes, looking lastly at studies of mixture separation. Hav-
ing learned what we can, the review will be widened again, to touch upon other phe-
nomena that might be related to the Ranque-Hilsch effect.

Efforts will be made to draw the material together, attempting to learn as much as
possible about the vortex tube from existing information. In the light of this, areas ripe

for research will be defined, and brief consideration given to the approach to be adopted.

2.2 Fluid Mechanics of Rotating Flows

As with many problems in fluid mechanics the basic principles and fundamental equa-
tions appear to be relatively straightforward. Unfortunately, they do not provide in them-

selves much insight into the problem athand. Nevertheless they remain important, provid-

10
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ing a basic understanding of the phenomenon under investigation. This section reviews
some fundamental results in the mechanics of rotating flows, and attempts to place them

in context with regard to the Ranque-Hilsch tube.

2.21 Governing Equations and Co-ordinate Systems

The generalised continuity, Navier-Stokes and energy equations may be written in Cartesian

Tensor notation as

%—I—V(pv) = 0 (2.1)
p% = pf + VII; (2.2)
p%]; = %+%—?—Vq+® (2.3)
where
I;; = —Péy+ 7 (2.4)
T = M (gij + ZZ]) + 52’;'#’% (2.5)
q = —-\VT (2.6)

with f the body force per unit mass, ® = 7;; gz the dissipation function, and () repres-
J

enting heat transfer with the environment.

It is both convenient and conventional in discussions of rotating flows in ducts to use
cylindrical polar co-ordinates. This thesis is concerned mainly with jet driven rotating
flows in cylindrical ducts, and will employ a cylindrical polar system originating from
the centre of the plane co-incident with "downstream’ side of the inlet nozzles as shown

in figure 2.1. In this system the continuity equation is

dp  Opu  1dpv  dpw  pu
at — or r 00 + 0z + T =0 27)
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Plane just downstream o
of inlets (in the Ranque-Hilsch Tangential inlet nozzle

tube, this is co-incident \

with the orifice plate).

Figure 2.1: The co-ordinate system employed.

and the radial, circumferential and axial Navier-Stokes (momentum) equations are re-

spectively, neglecting body forces

Du Y _op o] fou 20 N 1O (1ou e
P Dt r __ar—l_arﬂ or 3 v —I_ra@'uraH—l_ar_r
0 Ju OJv 2 fOu  10v u
T3z [“ (a— * a_)] T (a T a0 ;) 28)
<@+ﬂ) — _la_P_|_lg %@+2_u_%v
P Dt r N rod  rob K r 00 r 3 v
L0 (1ou v o\ o[ (Low o
or # rdd  oOr r 0z a rodfd 0z
2u (10w Jv v
i3 (;% Tor ;) 29)
(Dey Lo 0 (o 2
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with dilatation
ou 1 @ ow u

The energy equation becomes
10 or 1o (, 0T 0 or Dh  DP
" or (ME) 200 (A%) * o (Aa_) =y o @12

with the dissipation function,

o = 2 @2+ 1@4_%24_ 6;2
- o or rofd r
i 0

(2.13)

and the substantive derivative as

D 0 g wvad 0

For an ideal gas such as air, the enthalpy is given by
h=¢,T (2.15)

where ¢, is a weak function of temperature over the range of interest.

In general, the full Navier-Stokes equations are not required for the solution of a prob-

lem. For the most part we will deal with statistically steady flows where

0
=0 (2.16)
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Many cases allow the assumption of axisymmetry

75 =0 (2.17)

At times, quasi-incompressible flows will be examined, permitting considerable simpli-
fication

Vv = 0. (2.18)

2.2.2 Simple Solutions of the Swirl Equation

It is instructive to look at the solutions of simplified forms of the Navier-Stokes equa-
tions. Batchelor [11] shows that for two dimensional incompressible flow with negligible

radial velocities, the momentum equations reduce to a radial component,

2
oF _ o (2.19)

or r
commonly known as simple radial equilibrium, and a circumferential component

; 2, , ,
ov (8 v N 1 0v i) ‘ (2.20)

o\ Trar

For the case of a steady, incompressible internal flow between two rotating cylinders of

radii r; and r,, and angular velocities 2;, (2, respectively the equations admit a solution

{0 -0Q Qry — Qord
v:—(—_é i)w(—”é ) (221)

of the form

Extreme cases of this solution illustrate three commonly found rotating flows that are of
considerable use in interpreting physical phenomena.
The infinitely extensive fluid surrounding a rotating cylinder has a swirl velocity dis-

tribution given by putting r; — oo and {2, = 0 so that
B T%Ql

v = . (2.22)

r
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This result is termed a free vortex, and represents an irrotational distribution requiring
the exertion of a constant frictional couple on the fluid of 47 i€y by each unit length of
the central cylinder. Note that while the fluid viscosity does affect the couple required
to sustain the motion, the motion itself is independent of the viscosity so long as x > 0.

With the opposite extreme case of the flow inside a rotating cylinder, putting r =0
with ©, finite gives

v =yr, (2.23)

known as a forced vortex. In this case we have a rigid body rotation with the tangential
stresses zero at all points. The rotating cylinder does no work on the internal fluid, but
it must continue to rotate at a steady speed in order to maintain the flow. Again this
distribution is independent of the fluid viscosity, subject to > 0.

Many vortex flows far more complex than those considered above, including com-
pressible flows with low axial velocity, can be interpreted qualitatively in terms of these
results. In practice, jet driven vortex flows usually exhibit a central region approximat-
ing to a forced vortex, and a periphery with a roughly free vortex distribution satisfying
the no slip condition at the tube wall. Together these are termed a Rankine vortex, and

a sketch of the velocity distribution is shown in figure 2.2. Experimentally determined

Transition
Region
Forced Region Free Region
v~ v~1/r
P
=
[&]
o
()
>
=
=
n
0
0 Radius R

Figure 2.2: A sketch of the velocity distribution in a Rankine vortex.



CHAPTER 2. REVIEW OF THE LITERATURE 16

flow distributions available in the literature are discussed in section 2.2.6 below.

2.2.3 Non-Dimensional Parameters : Ekman and Rossby numbers

Tritton [12] derives two non-dimensional quantities commonly employed in geophysics*
to characterise rotating flows. We will not make substantial reference to them directly
in this work, prefering to use some engineering equivalents, but they are important in
understanding the wide range of literature on rotating flows.

The Rossby number Ro is defined as

U

and represents the ratio of inertial forces due to flow with a characteristic velocity U,
to the effects of rotation with angular velocity 2 and characteristic length scale L. It is
equivalent to the swirl number introduced in the section on dimensional analysis, 3.2.

The Ekman number Ek is defined

14

T QL

Bk (2.25)

where v is the kinematic viscosity. Indicating the ratio of viscous to rotational forces, it
is equivalent to the swirl Reynolds number more commonly employed in engineering.
Both the numbers characterise the influence of rotation on the flow field and, as noted

by Escudier [13], must be present in some form in any global consideration of rotating

!Geophysics often calls for the investigation of fluid flows in non-inertial frames of reference rotating
with a constant angular velocity vector 2. An example is the behaviour of winds over the rotating surface
of the Earth. In such circumstances it is convenient to write the equations of motion for the fluid with
respect to the rotating frame, which become with u as the velocity relative to the rotating frame,

9 1
8—1;+u.Vu:——VP—Q><(er)—?ﬂxu+yv2u
p

Here © x (€ x r) is the centrifugal force and 22 x u is the Coriolis force. Both are fictitious forces that
represent the effects of rotation. Generally, the Coriolis force is responsible for the peculiar behaviour of
rotating flows. This term clearly has a scale of 2L.
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flows.
In the Ranque-Hilsch vortex tube we will find that the Ekman number is very small
Ek << 1overmost of the flow field away from the walls. The Rossby number is typically

small, but at o = 0.1, much larger than the Ekman number.

2.2.4 The Taylor-Proudman Theorem

For rotating flows with small Rossby and Ekman numbers, the equation of motion in a

rotating co-ordinate system becomes

1
20 xu=—-VP (2.26)
p

where the pressure term P has been redefined to account for the effects of centrifugal
force. Flows governed by this equation are termed geostrophic. Taking the curl of this

equation gives for incompressible flows

Q.Vu=0. (2.27)
Choosing the axes such that
Q =0z, (2.28)
it is clear that
Ju
— =0. 22
5, — 0 (2.29)

This result, that there is no variation in the velocity field parallel to the axis of rotation,
is known as the Taylor—Proudman Theorem.

As with many of the results in this section, the Taylor—Proudman Theorem is not dir-
ectly applicable to the high-speed compressible flow in the Ranque-Hilsch tube. Indeed,
the implication of the theorem for vortex tube type flows is that there can be no variation
of the velocity field parallel to the axis of rotation, which is clearly untrue. However in

the regions where there is an approximation to geostrophic flow, there does appear to
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Figure 2.3: A sketch of the flow pattern in a counterflow vortex tube, based on a sugges-
tion by Van Deemter [1].

be a definite resistance to axial changes. As an example, see figure 2.3 which shows a
sketch of the flow pattern in a counterflow vortex tube based on a suggestion by Van
Deemter [1]. Note how the flow pattern remains relatively unchanged along the axis as
Taylor-Proudman would predict, apart from near the inlet nozzles, and the sudden flow
reversal near the axis. Both these departures are attributable to viscous and compress-

ibility effects.

2.2.5 Ekman Layers

On stationary planes perpendicular to the axis of rotation, the Ekman number becomes
locally high as a ‘rotating boundary layer” forms on the surface due to the action of vis-
cosity. Such a region is known as an ‘Ekman Layer’, and is substantially different from
‘conventional” boundary layers.

Greenspan [14] solves the Ekman layer for an infinitely extensive incompressible fluid

in a rotating co-ordinate system, showing that the motion of fluid particles in the layer is
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produced by a balance between viscous shear, the Coriolis force and the pressure gradi-
ent. For a spin down problem, which is essentially what we have at the stationary plane
forming the orifice of a counterflow vortex tube, the radial pressure gradient* will over-
come the Coriolis term and cause a net inwards flow. The direction of the flow velocity
through the Ekman layer varies according to the so called Ekman Spiral such that the net
velocity near to the wall is at 45 to the velocity in the ‘free stream’. The Ekman layer is

always very thin, with a thickness Ek?=.

2.2.6 Rotating Flow in Cylindrical Ducts

Having reviewed the basic theoretical understanding of rotating flows, we will proceed
by examining some of the experimentally observed features of rotating flows in cylindrical
ducts. Attention will be focussed primarily on studies of jet driven rotating flows similar
to that found in the Ranque-Hilsch tube, although some consideration will be given to
flows induced by other techniques including vanes, and spiral tapers.

Comprehensive reviews of the behaviour of confined vortices in flow machinery are

provided by Lewellen [15] and by Escudier [13].

The Steady Flow Field

The flow field in confined rotating flows has been investigated by a number of workers
with a variety of techniques. A recent paper by Chang and Dhir [16] presents compre-
hensive results for a jet-driven air flow obtained with a hot-wire anemometer. A Rankine
type vortex which exhibits an exponential decay in intensity as the flow progress along
the tube and away from the inlets, is found over most of the cylindrical duct. Axial velo-
cities are of a similar magnitude to the swirl, with a small region of reverse flow near the
centre reducing in size with distance from the inlets. Radial flow is always directed in-

wards (towards decreasing radius) with a maximum magnitude less than one hundredth

?Ekman layers are usually dealt with in the rotating co-ordinate frame. Hence the use of the word pres-
sure here strictly refers to the pressure corrected for the centrifugal force term.
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of the maximum swirl velocity. The maximum radial flow always occurs near the “knee’

in the Rankine vortex profile.

Gyarmathy [17] describes optical measurements of the mass density in a high speed
rotating air vortex, with a maximum Mach number exceeding 1.4. His estimates of the
swirl Mach number suggest the existence of a Rankine type vortex over the majority of
the flow field. He also notes a marked decrease in the static temperature of the gas near

the centre of the vortex.

Flow in what they describe as a “uniflow Ranque-Hilsch vortex tube” is examined by
Holman and Moore [18]. They conclude that their swirl profiles can be adequately mod-
elled by a relationship of the form

or’ = ¢ (2.30)

where n and ¢ are determined constants. This result provides a reasonable comparison
with much of the inner portions of a Rankine vortex profile, until just beyond the knee.
They also find that the effects of a jet driven flow can be modelled for ‘engineering pur-
poses’ by an approximation that assumes the injected flow occupies an effective area that
is independent of the flow rate. Thus the inlet swirl velocity just outside the nozzles
could be calculated from

mRT

. — 2.31
vin = 1 p (2.31)

where 1 is the mass flow rate per nozzle, A is the effective area, 7' the inlet temperature,
P, is the pressure just outside the nozzle, and R is the gas constant. No attempt is made

to justify this observation.

Escudier et al. [19] investigate the flow in a jet driven vortex tube with the inlet slit
extending for the whole length, and operated on water. Employing non-intrusive tech-
niques, they find a uniform axial velocity distribution, and a swirl velocity variation that

can be closely modelled by the solution of Burgers [20],

oo L [1 _ e] (2.32)

2rr
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whereI', & and ¢ are empirically determined constants. This expression gives a velocity
distribution very similar to the Rankine distribution, and is also reminiscent of the Oseen
[21, 22, 23] vortex

v =22 (1ol (2.33)

r

where r, is the diameter of the vortex tube and « is a constant®. Vatistas [24] confirms
this result with measurements in an air driven cyclone chamber.

There are a large number of studies looking at the effects of particular geometries on
the flow. Nejad and Ahmed [25] investigate the variation of swirl distributions through
a step expansion in their containing duct. Gilham et al. [26] consider the self induced

flow in a rotating tube with one end sealed and the other open to the atmosphere.

Turbulence

High speed rotating flows generally have high levels of turbulence. Moreover the tur-
bulence differs from that in conventional ’straight” flows because it is anisotropic.

Aswell as their mean flow measurements discussed above, Chang and Dhir [16] present
some turbulence measurements. The results show a clear anisotropy in the three com-
ponents of the eddy viscosity calculated from the Reynolds stress components. A similar

result is obtained by Kitoh [27].

Vortex Breakdown

Under certain conditions, rotating flows in ducts are seen to undergo a dramatic change
as they progress along the duct. Such a change is known as a vortex breakdown and
generally takes one of two forms. At moderate swirl Reynolds numbers and with low
turbulence, a stable axisymmetric ‘bubble’ breakdown is found, as sketched in figure 2.4.
With the higher Reynolds numbers and turbulence levels generally found in jet driven

vortex tubes, the breakdown adopts the form of a precessing spiral, illustrated in figure

3In fact Oseen’s solution is time dependent, so a = 4vt/r2.
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Figure 2.4: A ‘bubble’ breakdown.

2.5. The mean flow pattern is qualitatively indistinguishable between the two cases.

There is little agreement as to the physical processes at work in breakdowns, as shown
in the varied discussions of Escudier and Keller [28, 29], and Faller and Leibovich [30,
31]. Early work by Benjamin [32] derives a generally accepted criticality condition for
the flow, dependent on whether the axial flow velocity everywhere exceeds the relative
phase velocity of longitudinal inertial waves travelling upstream and supported by the
very rotation of the fluid. Breakdown then represents a change in the flow from super-
critical, where the axial velocity exceeds the phase velocity, to a sub-critical state where

the opposite is true.

Benjamin's criticality condition is very difficult to apply to practical flows. Squire
[33] suggests a rule of thumb that a flow is supercritical if v/w < 1 at the position of
maximum swirl. It will become clear later that this rule indicates that the majority of jet-
driven vortex tubes have a sub-critical flow near their inlet. In a long tube however, the
action of viscosity will tend to reduce the relative amount of swirl as the flow develops,

perhaps to such an extent that the motion is rendered supercritical.

Breakdowns are also found where rotating flows are vented from ducts into still at-
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Figure 2.5: A “spiral’ breakdown.

mosphere. In these cases they are responsible for the periodic disturbances that are dis-

cussed further in section 2.2.7.

2.2.7 Periodic Disturbances in Rotating Flows
Inertial Waves

Fluids, whether incompressible or otherwise, rotating geostrophically with an angular
velocity {2 can support inertial waves with angular frequencies up to 212 (see for example
Greenspan [14] or Tritton [12]). In a rotating flow moving axially through a duct, inertial
waves provide a mechanism for the upstream transmission of information where their

phase velocity exceeds the axial velocity of the fluid.

The Vortex Whistle

Vonnegut [34] observed that a tone was produced by swirling flows passing from con-
taining ducts into the still atmosphere. The sound was termed the Vortex Whistle. A sub-

stantial amount of work by Chanaud [35, 36] amongst others has attributed the noise
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to the precession of the central region of the vortex as it enters the still air, in a manner

similar to that seen with the spiral vortex breakdown.

2.2.8 Computation of Rotating Flows
General Techniques

Computation of rotating flows has been an active area of research for a number of years.
Many studies are available in the literature using a variety of techniques. We will con-
sider these after having established the nature of the equations needed to model the com-

pressible swirling flow in the vortex tube.

In any computational study of vortex tubes, we would be interested in solving the
viscous, turbulent, compressible flow equations in cylindrical co-ordinates. With recent
advances in computer hardware, full three dimensional solutions of compressible flows
using techniques for dealing with turbulence such as direct numerical simulation (DNS),
and large eddy simulations (LES) have become possible*. Such methods are too complex

for development here.

A minimum calculation of a vortex tube flow would constitute solution of the steady
viscous compressible axisymmetric equations. Anderson [38] and Rosenzweig et al. [39]
suggest that density changes have only a small influence on the flow pattern in the vortex
tube, a fact employed by Linderstrom-Lang [40] in his analytic solution. In this case, a
reasonable solution could be produced by solving the incompressible momentum equa-
tions, and then a compressible energy equation. This would also have the simplifying ef-
fect of decoupling the momentum and energy equations, influencing the choice of solu-

tion method. For this reason, much of the discussion here relates to incompressible flows.

To account for turbulence some kind of averaging procedure is required. For essen-

“For a discussion of the relationship between increasing computer power and the development of CFD,
see Fletcher [37].
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tially incompressible flows, the standard 'Reynolds decomposition” technique, writing

u=u+u (2.34)

and then time averaging the entire equation can be applied. To avoid the appearance of
third order correlations in calculations of flow with appreciable density variations, it is
preferable to employ Favre averaging [41] by introducing mass weighted velocities and

temperatures

pu/p (2.35)
oT/p. (2.36)

=g
Il

~.
Il

The dependent variables are split into average and fluctuating parts

u = u+u” (2.37)
T = T+1" (2.38)

except for the density and pressure which are decomposed in the normal way

p = p+yp (2.39)
P = P+P. (2.40)

A turbulence model is used to "close” the Reynolds stress correlations produced by the

decomposition.

Turbulence Modelling

Most common turbulence models can be interpreted in terms of an eddy viscosity, whereby
the Reynolds stresses are related to the mean flow quantities in such a way that the form

of the governing equations remains unchanged from the laminar case. With incompress-
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ible flows the relation between the modelled correlations and the mean flow quantities
is often exact, in that no terms need be neglected. In compressible cases dealt with by
Favre averaging, Cebeci and Smith [42] show that it is necessary to neglect some usu-
ally small terms. For such formulations, turbulence modelling is concerned with how to
estimate the appropriate value of the eddy viscosity.

Deriving turbulence models for compressible flows does not present any special dif-
ticulty. Fletcher [37] states that models developed for incompressible flow can be used
almost unchanged so long as the Mach number is less than five, and due account is taken
of the variation of the mean density.

The effect of rotation on turbulence modelling is not so straightforward. Simple mod-
els, such as the commonly used £ — e model proposed by Jones and Launder [43], assume
isotropic effects but as we saw earlier turbulence in rotating flows is highly anisotropic.
Despite this handicap, the £ — ¢ model produces creditable results, although as shown
by Yang et al. [44], it significantly over predicts the axial decay of swirl.

A number of modifications to the standard £ — ¢ model have been advanced which
attempt to account for the anisotropy of the turbulence. In general these involve modi-
tying the constants in the standard model equations by a factor dependent on the swirl.
Leschziner and Rodi [45] suggest a method with reference to computing a strongly swirl-
ing axisymmetric free jet. Kim and Chung [46] derive an improvement by considering
the Reynolds stress equations. In a slightly wider context, Ragsdale [47] examines the
applicability of mixing length theory to turbulent vortices.

Still better results can be obtained by adopting a full Reynolds stress model (RSM).
Armfield and Fletcher [48] demonstrate the accuracy of the solutions achieved in this
way. Attempts to reduce the computational penalty of solving perhaps seven extra trans-
port equations, imposed by the full Reynolds stress model in axisymmetric flow, have
produced algebraic Reynolds stress models (ARSM) which replace the partial differen-
tial equations of the full implementation by algebraic expressions. The saving in time
so generated more than offsets the slight inaccuracy introduced, although there can be

stability problems as seen by Warfield and Lakshiminarayana [49].
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Solution Techniques : Formulation and Discretisation

Many workers have employed the vorticity-streamfunction formulation for the calcula-
tion of quasi-steady strongly-swirling axisymmetric flows, taking advantage of the sim-
plification of the momentum equations it provides in this essentially two-dimensional
geometry. Despite having declined in popularity it still provides a fairly efficient and re-
liable method of calculating steady rotating flows. There are well known problems with
respect to the implementation of certain boundary conditions, the calculation of turbu-
lent flows, and achieving convergence where significant compressibility is present (see

for example, Gosman et al. [50]). All these difficulties can be overcome however.

The majority of vorticity-streamfunction solutions are obtained through finite differ-
ence / finite volume discretisations, see for example Kubo and Gouldin [51]. Recently,
finite element based solutions facilitating the use of unstructured grids have appeared.
Elkaim et al. [52] use the technique to solve incompressible turbulent flow in axisymmet-

ric geometries.

Primitive variable solution methods have become more popular in recent years, primar-
ily thanks to their straightforward extension to three-dimensional geometries and greater
suitability for flows evolving in time. While a multiplicity of solution techniques can be
found, the most frequently employed is the SIMPLE algorithm, as found in the TEACH
code due to Gosman et al. [53]. Strongly compressible flows, such as those found in gas
centrifuges where peripheral densities may be many times those at the centre, demand
specialised techniques as discussed by Harada [54], but are not likely to be necessary in

the Ranque-Hilsch tube.

In general, primitive variable solutions employ finite differences and finite volumes
as the method of discretisation. Finite element techniques present considerable obstacles

in this context.



CHAPTER 2. REVIEW OF THE LITERATURE 28

2.3 The Ranque-Hilsch Vortex Tube

2.3.1 Some Remarks on the Literature

The preceding sections have shown the scope of the field of rotating flows, and discussed
its influence on our understanding of the Ranque-Hilsch tube. This section will narrow
the consideration to work specifically concerning the Ranque-Hilsch vortex tube. After
looking to some elementary results, attention will be focussed on experimental studies
of the vortex tube. These will be considered in two groups, firstly external studies ex-
amining the performance of vortex tubes, and secondly internal studies which look at
the internal flow patterns. Next, theoretical investigations of the vortex tube will be re-
viewed, following which numerical studies will be discussed. While works looking at
the mixture separation abilities of the tube are examined, there will be no consideration
of proposed applications, as this will be left until chapter 7.

It will become clear that there are almost as many approaches to understanding the
Ranque-Hilsch effect as there are publications discussing it. Much of the published work,
indeed, is contradictory. One of the purposes of this section is to attempt to distill, from

the mass of information, a platform on which further work can be based.

2.3.2 Basic Analysis
Thermodynamics

Neglecting the flow velocities at the outlet’, and applying the First Law of Thermody-
namics to a system consisting of the compressed gas reservoir and the vortex tube, Hilsch
[4] shows that the fraction of gas leaving through the cold exit 1. is given by

Tin — Tk

= om T 2.41
e = (2.41)

°This is a reasonable assumption for a long tube as used by Hilsch.
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The specific entropy change of the fluid passing through the tube is given by
As = pie (8e — Sin) + (1 — pe) (81 — Sin) (2.42)

or for an ideal gas, such as air

AT. P,
As:cpln<1—Tm>—|—Rln<P). (2.43)

C

Fluid Dynamics

The reservoir pressures employed by Ranque and Hilsch make it clear that the speed of
swirl in the vortex tube is likely to approach sonic velocity. Indeed, from their observa-
tions high speed swirl appears necessary to obtain significant energy separation. Axial
velocities will be substantial, but not as large as the swirl velocities. It might be anticip-
ated then, that the flow would be compressible. The high swirl Reynolds number of the
flow, and the rather abrupt means of gas injection would indicate the presence of high

levels of turbulence as well.

Our examination of swirling duct flow has suggested that a Rankine type vortex should
be anticipated in the tube. In this case the predominant pressure gradient will lie in the
radial direction, providing the centripetal force for the circular motion of fluid particles,
giving low pressure towards the centre and high pressure at the periphery. A secondary
pressure gradient will exist between the inlet plane and the exits of the vortex tube. At
the periphery of the tube this will always be positive, driving a flow axially towards the
exit. Resolution of this with the radial pressure gradient imposed by the vortex, however,
can result in an adverse pressure gradient near the centre-line. In the light of this, we

should expect regions of recirculating flow near the centre-line of the tube.
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2.3.3 Experimental Studies

Our discussion of experimentally oriented studies of the Ranque-Hilsch tube will begin
with those works that examine the device from outside. After investigating the range of
techniques that might be suited to an internal survey of the tube, the results of a number
of experiments in the literature will be reviewed. Attention will then turn to any remain-

ing works.

External Studies

Most external investigations of the vortex tube have consisted of essentially empirical
attempts to improve its performance. A number of workers mention the effects of taper-
ing the vortex tube, with conflicting results. Borisenko ef al. [55] find that a conical cold
tube has no effect on a counterflow tube, while a 3° conical expansion in the hot tube
gives optimal performance. Gulyaev [56] also finds that a conical expansion brings im-
provements, and a patent application by the Khark Aviation Institute [57] mentions ex-
panding hot and cold tubes. Martynovskii and Alekseev [58] however, find a contracting
hot tube to be preferable. Raiskii and Tunkel [59] in contrast find it impossible to better
the performance of a cylindrical hot tube, noting that the majority of the energy transfer
appears to occur within the first five diameters of the tube.

There is more agreement regarding other dimensions. All authors find that an effi-
cient tube of either design must be many times longer than its diameter. Gulyaev [56]
recommends a minimum length of thirteen times the diameter, and Martynovskii and
Alekseev [58] get optimum performance for40 < L/D < 50. This is comparable to Hilsch’s
[4] comment that L /D should be around 50 for good temperature separation. Using the
method of Evolutionary Operations, Soni and Thompson deduce L/D > 45. Optimum
orifice diameters d mostly lie in the range 0.4 < d/D < 0.6.

Martynovskii and Alekseev [58] make a number of notable observations with their
counterflow tubes. Firstly, they cool the exterior of the hot tube, and find a consequent

reduction in the temperature of the cold flow. Secondly, they find that allowing the cir-
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cular wall of the hot tube to rotate in sympathy with the gas has no effect on the energy
separation. Lastly they manage to produce an inverted temperature separation for cer-
tain small cold gas fractions, whereby the gas passing through the orifice has a higher
stagnation temperature than that leaving at the valve.

Mentenin [60] examines the effect of including a flow straightener near the hot exit
of the vortex tube. Paruleker [61] presents the results of his experiments with a short
vortex tube, and investigates the possibility of building a ‘vortex tube within a vortex
tube’, such that the still swirling cold efflux of one tube is fed directly into another and
cooled further still. Arkharov et al. [62] describes a counterflow tube design supposedly
gaining improved performance from the inclusion of a resonance chamber near the inlet

nozzles

Techniques for Internal Studies

The vast majority of the works studying the flow internal to the vortex tube have em-
ployed intrusive techniques. While convenient, such methods are unsuited to investig-
ations of high speed, rotating, compressible internal flows. As Reynolds [63] and others
note, insertion of probes into the flow can cause substantial disruption to the flow pat-
tern. There are a number of reasons for this. In sub-critical flows, information can be
transmitted upstream through inertial waves, causing disruption to the whole pattern
both ahead and behind the probe. Furthermore, the very rotation of the flow will often
cause the probe to be affected by its own wake, giving inaccurate and widely fluctuating
readings.

An obvious solution to these problems is to use the more modern non-intrusive meas-
urement techniques. Unfortunately, the confined three dimensional nature of the flow
can make these difficult too. Whole field approaches, such as the particle image veloci-
metry (P1.V.) scheme described by Armstrong [64] and Adrian [65] amongst others, are
impractical thanks firstly to difficulties in interpreting the recorded image which is dis-

torted by the lens-like curved surface of the vortex tube, and secondly to the geometrical
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constraints imposed by attempts to illuminate and photograph a confined space with
limited access. Neither of the problems is insurmountable, and although their solution
would provide an extremely useful measurement tool, such work is outside the scope or
budget of this thesis.

Only laser-Doppler anemometry (L.D.A.), as described by Durst et al. [66] remains as
a technique directly applicable to the vortex tube. This though represents a cumbersome
method to map a whole flow field, requiring substantial setting up each time the point of
measurement is moved, and is not without practical difficulties. Once again, the curved
surfaces of the vortex tube do present some optical problems. Since L.D.A. requires a
substantial density of seeding particles for good results, the strong rotation of the flow
can preclude accurate measurement of the flow velocity towards the centre of the tube,
as the particles tend to be centrifuged towards the periphery of the flow.

An alternative approach is to estimate the effect of the insertion of the probe and at-
tempt to correct for it. A methodology for this was developed by Taylor [67] for incom-
pressible rotating flows, which extrapolates the readings obtained by a series of geomet-
rically similar probes of different diameters to predict that expected for a probe of zero
diameter. There is some potential for application to vortex tube measurements, but it
seems unlikely that the range of probe sizes required for good results can be used with
the vortex tube. The analysis assumes that the inserted probes merely perturb the flow,
whereas the large diameter probes would cause a dramatic change in the flow within the
Ranque-Hilsch tube.

Accurate measurement of vortex tube flows is difficult. As Reynolds [63] remarks,

all the data obtained by intrusive methods must be considered equally suspect.

Results of Internal Studies

Most authors investigate counterflow tubes. Hartnett and Eckert [68, 69] have a typical
rig, using a 75 mm diameter Plexiglas vortex tube with 8 inlet nozzles. Internal readings

are taken with intrusive probes, for excess inlet pressures ranging from 68 kPa to 136
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Figure 2.6: Effective energy separation as a function of axial distance from the inlet plane
for Brunn’s counterflow tube.

kPa. Their results show a Rankine-like vortex at all stations within their tube, and an al-
most linear increase in stagnation temperature with radius. There is a noticeable reduc-
tion in the stagnation temperature difference between the centre and the periphery of the
tube as the flow reaches the hot exit. This though is hardly surprising, as the coldest air
escapes through the orifice without travelling far down the tube, and there is evidence
of heat transfer with the surroundings. Indeed, despite the partial decay of the vortex,

2
max’/

the 'relative” separation, gauged by ¢, ATy /v?, .., increases as the flow progresses. Some
recirculation is evident near the centreline. With a 94 mm diameter Plexiglas counter-
flow tube, Bruun [70] obtains very similar results. Estimates of values of ¢,AT/v2,, asa
function of axial distance from the inlet are plotted in figure 2.6. Further data taken by
Takahama [71] in tubes with diameters ranging from 27.6 mm to 78 mm is comparable.

Takahama and Soga [72] provide additional information.

A counterflow vortex tube with a divergent hot chamber is investigated by Takahama

and Yokosawa [73]. The results were not markedly different from tubes of conventional
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Figure 2.7: Effective energy separation as a function of axial distance from the inlet plane
for Lay’s uniflow tube. Note that Lay does not give details of the axial position of his
stations, although they are at an approximately equal spacing. Larger station numbers
are further from the inlets.

design, although the swirl was found to decay less rapidly.
Lay [74] examines flow in a uniflow tube operated at reservoir pressures between 68
kPa and 238 kPa. All the profiles within the tube are comparable to those found in coun-

terflow tubes. Once again, there is some evidence of an axial development of the energy

2
mazx

separation. A plot of the value of the effective energy separation parameter ¢, ATj/v

as a function of station number is shown in figure 2.7.

Effect of Fluids other than Air

A vortex tube operated on steam gives performance characteristics qualitatively similar
to those that would be obtained with air. Experiments by Starostin and Itkin [75] show
that for substantial separations, say 70 K between the hot and cold streams, a much lar-
ger inlet reservoir pressure is necessary than with air. Work by Takahama et al. [76] es-

tablishes that the Ranque-Hilsch effect diminishes as the wetness fraction of the steam
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increases.

Gaseous hydrocarbons also exhibit the Ranque-Hilsch effect. Williams [77] expands
methane through a counterflow vortex tube, obtaining performance characteristics very
similar to those of air. Collins and Lovelace [78] examine the effect of the vortex tube
on two phase propane. As with steam, they find that performance declines for wetness
fractions greater than 0.2.

High pressure water is introduced into a commercially (Vortec Corp. [79] ) available
counterflow Ranque-Hilsch tube by Balmer [80]. He shows there there is no thermody-
namic reason why energy separation in liquids should not occur, and finds experimental
evidence of a radial temperature gradient at very high inlet pressures. No net cooling is

found though, and the energy separation seems attributable to viscous effects.

2.3.4 Theoretical Studies

Early workers, including Hilsch [4], attributed the energy separation in the vortex tube
toa change in the swirl velocity profile from a free vortex near the inlet nozzles to a forced
vortex further along the tube. Viscous dissipation was envisaged as producing the final
radial temperature separation. While such a transformation would indeed represent an
energy transfer from the centre of the flow to the periphery as shown by Kassner and
Koernschild [81], it seems extremely unlikely that it is in fact the mechanism responsible
for the behaviour of the Ranque-Hilsch tube. For one thing, none of the experimental
studies of vortex tubes have found any evidence of a free vortex near the inlet. For an-
other, there does not seem to be any physical process that could be responsible for such
an effect. Kurosaka'’s [8] acoustic streaming comes close, but does not envision the axial
development assumed by others.

Many detailed analytic investigations of the Ranque-Hilsch tube have been published
in the last half century, although there has not been any significant advance since 1982.
The rest of our discussion will be limited to these more recent publications, as many

of them cover similar ground to their predecessors such as Fulton [82], Scheper [83],
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Scheller and Brown [84].

Deissler and Perlmutter consider a planar, axially symmetric compressible vortex.
Employing a turbulent diffusivity ¢, they produce an analytic solution of the swirl equa-
tion

dv  puv v 10v  v?
(a‘r? + ror 7 ) (244)

Pt T

by specifying an axial velocity distribution and using continuity to deduce a compat-
ible radial flow profile. The result gives Rankine like profiles qualitatively comparable
to those obtained experimentally. Using an energy equation modified to account for the
expansion and contraction of eddies within the radial pressure gradient produces stag-
nation temperature curves broadly comparable with the results of Hartnett and Eckert
[68]. A similar, less complete, analysis is given by Van Deemter [1] who reaches the same

conclusions.

Hinze [85] also cites the behaviour of eddies in the radial pressure gradient as in-
volved in the energy separation. Say that the relationship between the mean radial tem-
perature and pressure distributions is other than what might be termed adiabatic, given

for an ideal gas by

T (P\T

= (E) . (2.45)
Assuming that the turbulent motion of the air particles is approximately adiabatic, then
their expansion or contraction in the radial pressure gradient will cause them to adopt
a temperature different to that of their surroundings. Once the fluid particle reaches its

destination, then it will come into thermal equilibrium with its surroundings, resulting

in net heat flux. The implications of this mechanism are considered further in chapter 5.

Sibulkin [86] includes axial variations in his solution by replacing variations in z with
avariation in time ¢. By assuming the Mach number to be much less than unity throughout
the flow field, the Navier-Stokes equations are decoupled from the energy equation, as
the gas density no longer depends on temperature. This allows calculation of velocity

profiles at points along the axis of a vortex tube (i.e. with increasing time) using numer-
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ical methods previously developed by Sibulkin [87, 88]. An initial velocity profile is re-
quired to represent the behaviour of the gas at the tangential inlets. Sibulkin assumes
that the inflowing gas occupies an annulus of the same height as the inlet nozzles, while
the gas at the ‘core’ remains undisturbed. Performance curves for the behaviour of a
vortex tube with cold gas fraction are estimated by integrating the energy equation for a
fluid element travelling along the centre-line of a counterflow tube. Comparison of the
results with some experimental data appears favourable, and Sibulkin concludes that
the Ranque-Hilsch effect is due to the differential expansion of the core and peripheral
gas as it travels axially up the tube from the inlet, and to thermal conduction from the
quiescent core to the high speed periphery.

Linderstrom-Lang [40] presents a incompressible, axisymmetric potential solution of
the Navier-Stokes equations, based on a method developed by Lewellen [89]. An order
of magnitude analysis reduces the turbulent energy equation to a balance between four
terms, namely axial and radial convection by the mean flow, turbulent conduction ra-
dially, and a turbulent dissipation term. The radial conduction term is evaluated with
a thermal eddy viscosity and accounts for the effect of the radial pressure gradient. An
eddy viscosity is also used to model the dissipation. A parameter study based on his res-
ults deduces that the Energy number, the cold mass flow fraction, the turbulent Reynolds
number and the ‘amount” of radial flow in the overall flow pattern are all strong influ-
ences on the energy separation. The results stand comparison with experiment.

Linderstrom-Lang also explores a heat-exchanger analogy for vortex tube operation,
originally proposed by Scheper [83]. Considering the work of Cohen [90] in the field of
isotopic enrichment, a value function to represent the effect of the tube on the gas passing
through it is derived.

In a comprehensive general discussion of Ranque-Hilsch tubes, Gulayev [91] reviews
a number of works. Using a semi-empirical theory of the vortex tube, he deduces that
turbulent heat transfer between the parallel streams of flow is responsible for the effect.

A radical departure from ‘conventional’ theories is offered by Kurosaka [8] who pro-

poses acoustic streaming as the mechanism of energy separation. A perturbation ana-
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lysis suggests that acoustic energy generated by the vortex whistle could be deposited
at the periphery of the flow, thereby transforming a base Rankine vortex into a forced
vortex. Detailed discussion will be presented with some experiments in chapter 3.

Lay [74, 92] gives a flow-field solution by superposing independent potential type
calculations of the axial and swirl velocity fields. No solution for the temperature field
is provided, although Lay suggests that there is evidence of a transformation in the swirl

velocity profile from a free to forced vortex.

2.3.5 Computational Fluid Dynamics Studies

It is surprising perhaps that there has been only one published attempt to simulate the
Ranque-Hilsch vortex tube using numerical techniques. Kahlil et al. [93] give detailed
results for a calculation of the flow field within a counterflow vortex tube similar to that
employed by Bruun [70]. Using the SIMPLE finite volume method developed by Gos-
man et al. [53], and the k — ¢ turbulence model, the estimated flow compares well with
experiment. Curiously, no mention is made of any attempt to calculate the temperature

field within the tube.

2.3.6 Mixture Separation — Centrifugation Effects

The swirling flow within the vortex tube provides a mechanical separation effect that
can be used to filter solid particles from a gas flow or alter the isotopic composition of
gaseous mixtures. A number of authors have investigated the potential of the Ranque-
Hilsch tube in this context, including Stone and Love [94], Elser and Hoch [95], Baker and
Rothkamp [96], and Torochesnikov and Koval [97] amongst others. As with the thermal
effect, there has been little agreement regarding the physical mechanism of the mixture
separation.

A comprehensive work by Linderstrom-Lang [98] investigates the oxygen concentra-
tion of air leaving the hot and cold exits of a modified vortex tube. Measurements show

a discernible, although small, difference in concentration between the two streams. In
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general, the hot outer flow is found to be enriched in oxygen, the heavier component
of the air®, although at low flow rates through the cold exit the separation is reversed.
Linderstrom-Lang deduces that there is no direct connection between the energy and
isotopic separations, the former being attributable entirely to centrifugation. Certain pe-
culiarities in the internal flow patterns proposed account for the reversal of the separa-

tion.

Marshall [99] passes a number of different gases through a vortex tube based on the
design of Linderstrom-Lang. The results tend to confirm that centrifugation is the primary
mechanism of separation, and reveal an optimum inlet Reynolds number for maximum
separative effect. Schlenker [100] describes a vortex tube isotope separator that has its
performance improved with the aid of a beam of discrete frequency electro-magnetic

waves directed its the centre-line to excite the required component.

Also of note in this context is the gaseous fission rocket concept. Developed theor-
etically during the late 1950’s and 1960’s, this proposed containing a cloud of heavy fis-
sionable material within a jet driven vortex tube, while allowing a hydrogen propellant
to pass through and escape out of a narrow central orifice at one end. The propellant
would be heated by the fissioning material and leave at sufficiently high velocity so as
to provide a substantial thrust. The fissionable material would be centrifuged towards
the periphery of the vortex tube, and thence unable to escape. Keyes [101] for example,
presents experiments studying the radial concentration of a heavy hydrocarbon suspen-
ded in helium when passed through a vortex tube, finding substantial separation. Ker-
rebrock and Meghreblian [102] give an analysis of the likely flow pattern, assuming that

the flow remains laminar. This is extended to a turbulent case by Rosenzweig et al. [103].

SFor the purposes of this discussion, assume that air is a binary mixture of nitrogen and oxygen.
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2.4 Other Relevant Phenomena

There are a number of poorly understood energy separation phenomena that are worth
considering partly for completeness and partly for comparison with the Ranque-Hilsch
effect. A review of such phenomena in general, is provided by Eckert [104], who con-
siders energy separation in boundary layers, impinging jets, and resonance tubes. Reyn-

olds [105] discusses energy separation in an aerodynamic context.

2.4.1 The Eckert-Weise Effect

The Eckert-Weise effect refers to the cooling found in the wake of a bluff body obstructing
a flow of appreciable Mach number. Kurosaka et al. [106] investigate the energy separa-
tion found in the von Karman vortex street behind a cylinder with its axis at right angles
to an air flow. Their conclusion that the separation is caused by the action of the shed
vortices in the positive pressure gradient from the centre of the wake to the free stream

is notable for its similarity to certain explanations advanced for the vortex tube.

2.4.2 Temperature Anomalies in Stars

It is known in astrophysics that the exterior layers of certain stars are hotter than simple
heat transfer models would predict. The majority of the body’s heat is produced through
fusion near the centre of the star, and naively one would anticipate a gradual reduction
in temperature with radial distance from the centre. In practice a temperature minimum
is found within the exterior layers, beyond which exists a limited region where temper-
ature increases with radius. This temperature distribution is notable thanks to its appar-
ent similarity to the Ranque-Hilsch effect. The work of Mullan and Cheng [107] amongst
many others has suggested that this energy transfer can be attributed to acoustic stream-

ing.
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2.5 Discussion

2.5.1 On the Nature of the Ranque-Hilsch Effect

A number of deductions as to the nature of the Ranque-Hilsch effect can be drawn from
our review of the literature. We will attempt to bring together the information from the

literature survey, without referring to the specific results or theories:

1. Energy separation is related directly to the swirl. The greater the swirl, the

greater the energy separation.

2. Theenergy separation shows evidence of axial development in the region near
the inlet. In other words the separation increases as the flow progresses axi-
ally, at least along the first few diameter lengths. Interpretation of data is diffi-
cult however, as the swirl decays with axial distance and as noted above, the
energy separation potential depends directly on the level of swirl. Gauging
the ‘effective’ separation by the ratio of the maximum temperature difference
to the maximum swirl velocity provided a reasonably clear picture of the de-

velopment.

3. Pre-existing energy separations appear to be supported by swirl, at temper-
ature differences greater than those which the swirl could itself generate. To-
wards the exits of the tubes, the swirl decays substantially, but the energy sep-

aration does not decrease in proportion.

4. There is considerable dispute as to the nature of the swirl velocity profiles in
the vortex tube. Early workers suggest the presence of a free vortex. Exper-
imental evidence from a number of environments does not support this, re-
porting Rankine vortex and forced vortex-like patterns. Reports that the ef-
fects of jet driven vortex flows can be modelled by considering the inlet flow
as confined to a peripheral band, combined with Batchelor’s result for flows

inside a rotating cylinder would appear to support the existence of Rankine
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10.

vortices.

. The axial flow pattern in both types of vortex tube can be interpreted qualit-

atively with reference to the Taylor-Proudman theorem. Regions of recircula-
tion near the centre-line can be accounted for by virtue of the adverse pressure
gradient found there, and posses a qualitative similarity with vortex break-

down.

. Comparison of the results of feeding compressible gases and essentially in-

compressible liquids through vortex tubes indicate that compressibility is not
essential for the appearance of an energy separation. Its presence is essential
for there to be substantial cooling, and aids separation generally. This con-
clusion also agrees with the results of operating vortex tubes on two-phase

substances, where performance declines with increasing wetness fraction.

There are high levels of turbulence in all jet driven vortex flows. Clearly tur-
bulence must have some influence on the energy separation, but we cannot
draw any conclusions regarding its importance. A number of mechanisms by
which turbulent transport in a strong pressure gradient could produce an en-

ergy separation have been advanced.

. Periodic disturbances are supported by rotating flows in the form of inertial

waves. There is considerable experimental evidence for their existence in geo-
metries similar to the Ranque-Hilsch tube. There are reports of such disturb-
ances, in the form of the vortex whistle, with regard to the vortex tube although
their source has not been determined. A mechanism citing periodic disturb-

ances as responsible for the Ranque-Hilsch effect has been advanced.

. Analytic studies have suggested that viscous effects can at least contribute to

any energy separation.

It has been suggested that the physical separation of substances with different
atomic masses in the vortex tube is not directly connected with energy separ-

ation, excluding the fact that both require swirl.
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2.5.2 The Comparison of Temperature Distributions from Uniflow and

Counterflow tubes

As both the uniflow and counterflow tubes exhibit the Ranque-Hilsch effect it would be
useful to determine how to compare radial temperature distributions from tubes of each
type with similar geometries. Since the axial flow velocities within the tubes are reported
to be much smaller than the swirl velocities, it is unlikely that they have a great effect
on the radial temperature distribution. It would be reasonable in this light to compare
temperature distributions where the flow patternsin the tubes are similar, in other words
in the region from the inlet nozzles up to the sudden reversal of the central flow in the
counterflow tube. Beyond this point, near to the control valve, the radial profiles are not
comparable as the cold central gas has been ‘syphoned’ off in the counterflow tube.
This suggestion is compatible with one observation. Comparison of the effective sep-
aration curves for counterflow (figure 2.6) and uniflow tubes (figure 2.7) shows that the
effective separation in the counterflow tube declines much faster as the valve is approached.
This is because the central cold flow has been removed ion the counterflow case. In the
section near the inlet nozzles, the two tubes give a similar axial development of separa-

tion.

2.6 Implications for Investigations of the Ranque-Hilsch

Vortex Tube

Our survey of the vortex tube has highlighted four areas worthy of further attention.
Particularly useful would be a series of experiments with the objectives of confirming
certain existing results, obtaining data for later use in an empirical model and compar-
ison with any theory, and further investigation of the mechanism underlying the energy
separation, in particular the swirl velocity profiles and the nature of any periodic dis-

turbances in the flow.
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Secondly there is plenty of potential for the application of CFD techniques to the vor-
tex tube. A program that gave results even with only a qualitative similarity to experi-
mental values would be extremely useful, both to provide insight for this project, and as
a design tool for the future.

It is unlikely that any analytic model of the vortex tube can hope to achieve an agree-
ment with reality that is better then qualitative. There is scope, however, for analytical
investigations of possible mechanisms of energy transfer, and of factors which might in-
fluence the Ranque-Hilsch effect. This will be our third objective, which we will supple-
ment by attempting to produce an empirical model of vortex tube performance.

Completion of the above should provide sufficient knowledge to allow the final ob-
jective to be tackled, specifically a pilot study of potential applications for Ranque-Hilsch
tubes. Ranque’s interest in the vortex tube was motivated partly by its potential applic-
ation to gas liquefaction, and we shall look at this in some detail. Further consideration

will also be given to the utility of the vortex tube in isotope separation.

2.7 Closure

In this chapter we have reviewed current knowledge regarding the Ranque-Hilsch vor-
tex tube. Efforts have been made to encapsulate its important features, and areas likely

to benefit from further attention have been identified.



Chapter 3

Preliminary Investigations and

Experiments

3.1 Opening Remarks

In this chapter some of the more important features of the vortex tube highlighted by
the literature survey will be investigated further. We will start by conducting a thought
experiment to establish which features of a vortex tube might influence its performance,
and then perform dimensional analysis on the results. While useful in that it provides us
with a set of non-dimensional parameters with which to describe vortex tubes, it turns

out to be a difficult path.

Next we will consider a set of experiments conducted to shed some light on the flow
in vortex tubes, and in the process examine in depth a few of the ideas touched on earlier.
The work was performed using an existing set of vortex tubes, and the section begins by
discussing their more important features. Some initial experiments serve merely to char-
acterise the tubes, and examine the validity of earlier works. They are worthy of consid-
eration, however, as they bring out many remarkable features of vortex tubes. Careful
analysis is made of the errors inherent in most of this work, partly to provide a clear im-

pression of the limitations of the techniques employed, and partly to serve as an example

45
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to future workers in the field.

Towards the end of the chapter, the possible influence of acoustic streaming in the
Ranque-Hilsch tube is examined in some depth. After drawing conclusions from the
available evidence, the results of a number of experiments investigating acoustical dis-

turbances in the CUED tubes are presented.

3.2 Dimensional Analysis

3.21 Background

The vortex tube and Ranque-Hilsch effect constitute a complex situation. Frequently, in
such circumstances, the technique of dimensional analysis is employed in an attempt to
set the direction of any further work.

Stephan [108] performed an approximate analysis for geometrically similar counter-

flow tubes, yielding,
AT,

(AT,)

maxr

= flpe). (3.1)

where AT, is the cold tube temperature drop, (A7), . is the maximum value of AT, as
the fraction of gas leaving through the cold port ., is varied across its range of (0, 1),
while all other parameters are held constant. As is shown in section 3.4.4, this result is
well born out in practice.

Westley [109] attempted empirically to optimise counterflow vortex tube perform-
ance by varying parameters according to the non-dimensional relationship

ATC Pz dc dzn

with 7}, representing the inlet (static) temperature of the gas, P;, the inlet (static) pres-
sure, P, the static pressure in the cold outlet, d. the diameter of the orifice, D the inner dia-
meter of the main vortex tube and d;,, the effective diameter of the inlet nozzles, defined

as the diameter of a circle with the same area as the inlet nozzles. R represents the set-
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ting of the control valve at the hot exit, calculated by dividing the distance the valve has
been withdrawn from the tube by its maximum extent of travel, and may be thought of

as a non-linear function of the cold exit mass flow proportion, s..

Unfortunately, neither of these results is easy to extend directly. In the light of this a

fresh approach, based on the earlier parts of Stephan’s work, was adopted.

3.2.2 Analysis

Consider a counterflow vortex tube. The factors that might be expected to influence its
performance are listed, with their symbols and dimensions in table 3.1. Note that the
size of the cold outlet tube is omitted for two reasons; firstly a number of experiments
have observed that its length has a negligible effect on the flow in the remainder of the
tube, and secondly, its neglect renders the analysis immediately applicable to uniflow
type vortex tubes, by substituting the diameter of the cold outlet nozzle in the control

valve for that of the orifice diameter in the counterflow tube.

It is worth pointing out that not all the parameters listed are completely uncorrelated.
In particular, the cold mass flow fraction y., will be a function primarily of the orifice
diameter d., the effective diameter of the hot exit d;,, the overall dimensions of the tube
L,D, and the static pressures at both outlets, P., P;. It is however, useful to consider the
cold mass flow fraction as an independent variable since (i) in many cases one would
expect it to be a fairly weak function of the other parameters and (ii) it provides a useful
‘flow-oriented” parameter, especially in geometrically similar tubes. This redundancy
must be considered when performing the dimensional analysis. It would not be sens-
ible to maintain both d;, and p. when examining, for example, otherwise' geometrically

similar tubes operated under identical sets of inlet and outlet conditions over a range of

'The word “otherwise’ is used advisedly here, since strictly, the tubes are not geometrically similar un-
less d} is the same in each case. However, it is conventional in vortex tube analysis to ignore this fact, see,
as an example, Stephan [110, 108] or Wesley [9, 109, 111]. This is also convenient, moreover, as it is useful
to model the dependence of performance on d} or p.. See the following text for some elaboration.
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| Variable Name | Symbol | Dimensions ||
Geometrical Parameters
(Hot) Tube length L L
Tube internal diameter D L
Inlet nozzle effective diameter ) L
Orifice diameter d. L
Effective diameter of hot flow exit restriction (i.e. dy, L
of the area between the tube wall and the valve)
Mass Flows
Mass fraction of flow leaving through cold exit e 1
Overall mass flow rate m MT!
Reservoir Conditions
Inlet (reservoir) pressure P, ML™'T?
Inlet (reservoir) temperature T, Q)
Gas density at tube inlet Pin ML3
Gas Properties
Gas viscosity [ MLT !
Gas thermal conductivity A MLT—30!
Heat capacity of gas at constant pressure ¢ L?T—207!
Gas isentropic exponent v 1
Gas coefficient of thermal expansivity 5 0!
Mole fraction of gas component i (X0)., 1
in any mixture, at the inlet
Internal Flow Parameters
Static pressure at cold exit P, ML 'T—?
Static pressure at hot exit P, ML'T—?
Swirl (azimuthal) velocity at tube inlet Vo LTt
Co-ordinates
Co-ordinates in 3 dimensions r0,z L
Other Factors (Not considered here)
Tube material
Internal roughness
Gas molecular mass

Table 3.1: Independent variables influencing the flow in counterflow vortex tubes. The
dimensions should be interpreted according to the conventional scheme, viz.: M repres-
ents dimensions of mass; L, those of length; 7', of time and O, of temperature.
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values of d;, and p., as, on the basis of the above,

pe= fi(d:, L*, D*, Pr, Py, d;) (3.3)

where * denotes a non-dimensional quantity, with 7, L*, D*, P, and P} invariant between

the tubes, leaving,

e = fi(dy) (3.4)

as intuition tells us to expect. In this case the two parameters are perfectly correlated,
and one should be dropped. A similar argument could be advanced regarding the rela-
tionship between the inlet swirl velocity v, and P;,, 6, » when any two of v}, P}, 6%, m*

are held constant.

Table 3.2 lists some potentially interesting parameters of vortex tube performance,
which could be considered as functions of the independent variables given in table 3.1.

Of necessity, this list is merely a subset of the possible parameters.

The dependent variables are divided into two types. Astheir name suggests, the field
variables are those which vary over the entire vortex tube, being functions of the spatial
co-ordinates. Integrated variables are those which refer to a specific value, and are con-
sequently not spatially dependent. The spatial co-ordinates should not be included in

analysis of these integral quantities.

Assume that the pressures outside the flow exits are equal, that is P. = F;, as is al-
ways the case in practice. Performing the most general dimensional analysis under this

constraint, with the parameters listed, one obtains

L/D, §/D, d./D, dy/D,
Sv R ) E7 Pm in 2; Pc in 2; c
N.D.V. = ‘ [pinto; Fel pinvo, 1 (3.5)
v P?“, /BTZTH (XZ)

r/D, 0, z/D

n

where ‘N.D.V.” refers to the non-dimensional dependent variables listed in table 3.3 and
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| Variable Name | Symbol | Dimensions ||
Field Variables
Velocities in 3 Dimensions U,v A LT!
Pressure P ML=T—2

Temperature T Q]

Density p ML™3
Component concentrations T; 1

Integrated Properties

Cold outlet temperature T. Q]
Hot outlet temperature T Q]

Table 3.2: Some potentially interesting parameters of vortex tube performance, depend-
ent on the independent variables listed in table 3.1.

| Description | Symbol | Composition ||
Normalised cold temperature drop AT, ]T;, (T. —Ti) /T,
Normalised hot temperature rise AT,/ T;, (T — 1) | Tin
Normalised velocities UV, 0/ Vy, W[V,
Normalised pressure P/pinv?
Normalised temperature T/T;,
Normalised density P/ pin

Table 3.3: Non-dimensional dependent variables.

Swirl Reynolds number Re = _PinzoD

Swirl number S = 791‘":3172
Prandtl number Pr=~tr
Energy number E = @hn

Yo
If geometric similarity is assumed, the expression becomes

Sa Rea Ea Pm/meg, PC/[)m’Ug, e
N.D.V. =f v, Pr, 8T, (X;)
r/D, 0, z/D

(3.6)

in
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and if only a single, particular gas is used, then for the integrated properties,
N.D.V. =f { S, Re, E, Py,/pinvd, P./pmva, p. } : (3.7)

Equation (3.7) is the simplest non-dimensional relationship of useful generality that we
can write to describe vortex tube behaviour. With seven independent variables, it is too

complex to be of much direct use.

The large number of independent variables in expression (3.7) is a result of uncer-
tainties in the performance of the inlet nozzles and gas supply to the tube. Nozzle and
supply design has been characterised only by the effective diameter parameter 6, and
it is clear that there could be a large number of arrangements satisfying this criterion.
Even limiting any study to tubes with geometrically similar nozzles would not provide
a solution, since differences in the behaviour of the gas supply system would cause some

of the parameters, especially £ and P, /pi,v5, to vary.

These difficulties can be overcome if consideration is further limited to only a single
tube, with a particular supply arrangement, connected to a compressed gas source with
aninvariant reservoir temperature 7;,. There will be, then, a unique relationship between

P;,, P., and vy, so our non-dimensional relationship can be reduced to
N.D. V. = f{P,,/P., p.} (3.8)

Thus only two parameters are required to characterise a particular vortex tube installa-
tion. Dealing with a number of nominally geometrically similar installations is a much
more difficult problem, although we might expect equation (3.8) to apply as an approx-
imation if the difference in tube diameters was small* and they were powered by the

same supply.

“No attempt will be made to define ‘small’.
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3.3 The CUED Vortex Tubes

Three vortex tubes were used for the experiments, as shown in figure 3.1. They were ori-
ginally designed by Walker [112], according to the principles set out by Soni and Thompson
[113]. Two are made from brass, having internal diameters of 26 mm and 18 mm, and the

third from transparent Perspex, with an internal diameter of 24 mm. Table 3.4 gives de-

tails of their dimensions in conjunction with figure 3.2.

Tube | Material | Hot Tube | Cold Tube | Internal Nozzle No. Of
Length Length Diameter | Diameter | Nozzles
A Brass 1300 mm | 250 mm 26 mm 6 mm 2
B Brass 900 mm 250 mm 18 mm 4 mm 2
C | Perspex | 1300 mm | 250 mm 24 mm 6 mm 2

Table 3.4: Pertinent dimensions of the CUED vortex tubes.

Figure 3.1: Photograph of the vortex tube apparatus. The plastic tube (C) and the 26 mm
diameter brass tube (A) are visible. Tube B has been removed for clarity.
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Figure 3.2: Drawing of the CUED vortex tubes.
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The orifice in each tube may be varied by inserting a Perspex plate, drilled out to any
desired diameter, into a slot separating the hot and cold tubes. By inserting a solid plate,
a tube can be run in the uniflow configuration, although in this case, there is no way of
separating the hot and cold streams. With the counterflow setup, the relative amounts
of hot and cold gas can be controlled using the simple conical valve arrangement near

the hot exit.

All the tubes are equipped with two tangential inlet nozzles, slightly displaced from
the orifice plate. It is quite possible however to run a tube on a single nozzle by only
connecting the gas supply to a single inlet port, and closing off the unused opening with
a clamp. Air is supplied from the laboratory compressor, via a filter and an adjustable
pressure regulator, together giving a maximum achievable inlet stagnation pressure at

the tube of around 690 kPa.

A number of holes of approximately 3 mm diameter are drilled at points along each
tube. These allow measurement probes to traverse the radius of the tube at various sta-

tions along the axis.

3.4 Basic Measurements

3.4.1 Background

In order to characterise the vortex tubes, and verify the findings of earlier workers, some
relatively straightforward measurements were made. The data also gives a ‘feel” for the

nature of the vortex tube.

Three aspects were investigated. Firstly, the basic performance characteristics of the
tube were assessed, secondly the dependence of the outlet temperatures on the cold mass
fraction, and lastly how the temperature of the tube wall varies with axial distance from

the orifice.
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3.4.2 Description of Equipment

For these simple experiments, all temperatures were measured using a type K thermo-
couple. A digital readout was provided by a Comark type 6110 microprocessor thermo-

meter.

With the brass tubes, estimates of the outlet gas temperatures were obtained by fasten-
ing the thermocouple to the outer tube wall, near to the outlet, with ‘blu-tak’. It was as-
sumed that the wall temperature was representative of the gas temperature. This is not
too bad an assumption, for flows near the outlet ports. The high conductivity of brass
and the thinness of the wall makes the temperature difference between the inside and the
outside of the tube small®. Additionally the flow is well mixed near the outlets, giving a

fairly uniform temperature profile across the radius.

With a plastic tube, a technique based on conduction is not viable. Gas temperature
readings here were taken by placing the thermocouple just within a measurement hole,
and sealing with ‘blu-tak’. As with the conduction technique, this is far from accurate,

but has the advantage of being quick.

Mass flow measurements were not taken explicitly. Instead the cold mass fraction

was estimated from the energy conservation equation, viz:

ATy

e = AT L AT (3.9)

The inlet flow (‘reservoir’) temperature, used in the calculation of the A7" values, was ob-
tained from a thermocouple introduced into the supply pipe. As the flow velocity there
is low, the static and stagnation temperatures are essentially identical. Where required,
numerical values for mass flow rates were estimated from density, velocity and pressure

information. Any other equipment employed is described in the appropriate sections.

3A quantitative assessment of the error due to this assumption is given in appendix A.
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Performance of 26 mm tube : Raw Data, with Tin=298 K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.3: Raw performance data for the 26 mm tube with a 7 mm diameter orifice. The
circles represent data points, and the lines are interpolating splines. The data were taken
atpressure ratios: P1: P,/ P, =6.82,P2: P,,,/P. =5.12,P3: P,,/P. = 3.41, with the upper
curves representing the hot flow, and the lower curves, the cold. The pressure at the cold
outlet in each case was atmospheric.

3.4.3 Essential Characteristics

Basic performance

Figure 3.3 shows the variation in energy separation performance for the 26 mm tube as a
function of the cold fraction y., and the inlet pressure F;,,. The data shows the character-
istic form reported by Hilsch [4] and others, with the hot curves rising from zero AT/T,
at p1. = 0 towards a finite value at i, = 1, and the cold curves starting from a finite value
at y. = 0, reaching a maximum near g, = 0.3 and then falling towards zero at p. = 1.
Investigations of the other tubes produced similar families of curves. At any reservoir
pressure and cold fraction, the 18 mm diameter tube gave an increased separation com-

pared to the 26 mm tube, while the 24 mm tube exhibited a lesser performance.
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Comments on tube operation

Perhaps the most obvious feature of the tubes was the amount of noise they produced in
operation. The hiss of the escaping air was usually so loud that it was advisable to wear
ear defenders. A strange whistle-like noise was just audible under the majority of flow
conditions, but it was far from a pure tone, and its source was difficult to determine by
ear.

When run at a very high cold fraction, near p. = 1, all the tubes exhibited an unex-
plained instability, producing a brief spitting noise at irregular intervals of approxim-
ately one second. As the tubes gave very little energy separation under such conditions,
it was concluded that the phenomenon was most likely unconnected with the Ranque-
Hilsch effect, and not investigated further.

When the tubes were operated near their optimum, the energy separation was quite
striking. Both the hot and cold outlets would be painful to touch for any extended period,

and atmospheric water vapour would condense onto the cold outlet pipe.

Flow visualisation

Flow visualisation was attempted in order obtain a general impression of the flow within
the tube. Initial efforts injecting vapourised oil were unsuccessful, as the droplets were
‘centrifuged” on to the outer wall, where they quickly merged to form a flow of liquid.
Seeding the flow with “glitter” proved much more successful. The results were recor-
ded on video tape, and examined using a high quality video player with a digital frame
buffer. Hard copy of the interesting frames was obtained with a video printer. Unfortu-
nately it was not possible to resolve details of the flow, such as the nature of any vortex
breakdown, using this technique. The motion was too quick to be recorded in detail on a
standard video, and the particles too large to react to rapid changes in the flow direction.

Figure 3.4 shows a flow visualisation result obtained using the Perspex tube with
a 10 mm diameter orifice, operating at a reservoir pressure of 276 kPa (F;,,/P. = 2.7)

and producing a small temperature separation. The particle streaklines clearly show the
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Figure 3.4: The results of the flow visualisation. The top photograph is a control picture,
with no particles introduced into the flow. Compare the middle picture, which clearly
shows streaklines. In both cases, the field of view shows an 80 mm length in the hot tube
of installation C, between z* = 0.105 and z* = 0.166. The lower picture is of a length of
the hot tube of installation C between z* = 0.074 and z* = 0.124 that gives a particularly
clear impression of the nature of the flow. In all cases the axial flow is from left to right.
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spiralling nature of the flow. Measuring the angle to the tube axis of their central por-
tions, and employing the geometry of figure 3.5 gives an estimate of the ratio of the swirl

and axial velocities. At the left hand side of the picture (the ‘upstream’ end)

Y 1767, (3.10)

w
whereas at the right hand hand side the swirl has decayed slightly since

Y 1585 (3.11)

w

Corresponding

Tangent (A-A) to path at
gent (A-A) to p points on the

plane at right angles to Particle path

viewing direction \
Axis of tube\ / Vswirl

Vaxial

’ /
Tangent A-A

Ve
tan p= swirl

Vaxial

SIDE VIEW END VIEW

Figure 3.5: The geometry employed to estimate the flow direction from the streakline
results.

3.4.4 Performance and Cold Mass Fraction.

In order to test Stephan’s approximate similarity relationship, equation (3.1), the depend-
ence of the cold temperature drop, AT as a function of the cold mass flow fraction, .
was investigated for the 26 mm and 18 mm diameter vortex tubes. Readings were taken
over a range of the the available inlet pressures.

Figure 3.6 shows the normalised data for the 26 mm tube, with a 7 mm diameter ori-
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Performance Modelling of 26 mm Rangue-Hilsch Tube

1.2 T T T T T T

ATc/(ATC) max

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cold fraction, W

Figure 3.6: The ‘performance’ of the 26 mm diameter vortex tube as a function of the
cold outlet mass flow fraction. Each set of points represents data obtained at one inlet
pressure, the solid line is the mean fit, and the dotted lines represent bounds containing
at least fifty percent of the data points.

tice. Following Stephan, and fitting a cubic yields,

AT,
AN 3.23u° — 7.97u% +3.97p. + 0.39. (3.12)

maxr

Normalised data for two geometrically similar situations, the 18 mm tube with a 5 mm

orifice and the 26 mm tube with a 7.5 mm orifice, is shown in figure 3.7. A cubic fit gives,

AT,
AN 3.34p% — 6.97u% + 3.07u. + 0.57. (3.13)

maxr

While it is clear that Stephan’s work is essentially correct, the analysis raises a number
of issues. Foremost is the nature of the curve to be fitted through the data. The choice
of a cubic function is entirely arbitrary, and in this case, not completely satisfactory, as

discussed in chapter 6, where an improved formulation is developed.
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Cubic fit for 26mm (7.5mm) and 18mm (5mm) tubes

1.2

setl

) X + * O X +

ATc/(ATC) max

0.2 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cold fraction, W

Figure 3.7: The ‘performance’ of the 18 mm and 26 mm diameter vortex tubes in geo-
metrically similar configurations, as a function of the cold outlet mass flow fraction. The
points represent measured data, the solid line is the mean fit, and the dotted lines repres-
entbounds containing at least fifty percent of the data points. The data sets are annotated
as follows: set 1 - 18 mm tube, P,/ P. = 6.89, 1 inlet nozzle; set 2 - 18 mm tube, P,/ P. =
6.89, 2 nozzles; set 3 - 26 mm, P;,/P. = 6.89, 1 nozzle; set 4 - 26 mm, P;,/P. =5.17,1
nozzle; set 5 - 26 mm, P;,/P. = 3.45, 1 nozzle; set 6 - 26 mm, P;,,/ P. = 6.89, 2 nozzles; set
7-26 mm, P,/ P. = 5.17, 2 nozzles. Atmospheric pressure (P.) was approximately 100
kPa in each case.
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Axial Wall Temperature Distribution for 18mm Tube (B)
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Figure 3.8: Variation of the temperature of the cylindrical wall with distance from the
orifice, for the 18 mm tube. The circles represent measured data, while the solid line is
an interpolating spline.

A secondary problem is the fairly wide spread of the data, even when taken in a single
tube (figure 3.6). The dimensionless model only provides only an approximate result,
although it might be hoped that a sound basis for the fitted function would bring some

improvement.

3.4.5 Axial Wall Temperature Variations

Figure 3.8 shows a typical result for the variation of the temperature of the cylindrical
wall with distance from the orifice. Note firstly the decline in temperature of the hot
tube between z* = 0.5 and z* = 1. This would appear to be due to heat transfer from the
tube to the environment, and suggests that there is little energy separation advantage to
be gained from the portion of the hot tube beyond 2* = 0.5.

In the cold tube, minimum temperature is achieved just beyond the orifice. Heat

transfer with the environment would appear, again, to be responsible for the small in-
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crease in temperature of the cold flow as it approaches the outlet.

Re-normalising a number of such curves by dividing AT'/T; by its maximum value

(AT/Ty), .. and the axial co-ordinates z* by the value =, ., determined as marked on

max’/

tigure 3.8 collapses them to nearly the same line over the range 0 < z < z,,4,. The rela-

tionship can be modelled empirically by an expression of the form
AT* =1 — "t (3.14)
Reduced data from tubes A and B is shown in figure 3.9, along with the fitted expression

AT* =1 e0.0565—4.332* (315)

which shows at least a working correspondence.

Normalised Temperature Distributions along Vortex Tube Walls

Normalised Temperature, AT/AT, .,

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised Distance from Orifice, z/7,,,

Figure 3.9: Normalised cylindrical wall temperature axial distributions for the 18 mm
and 26 mm vortex tubes. The solid line represents the fitted relationship, and the dotted
lines error bounds that should contain at least 50 percent of the points.
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3.5 Flow Field Mapping

3.5.1 Background

The flow field internal to vortex tubes has been examined by a number of workers in-
cluding Lay [74], Sibulkin [86], and Takahama [71]. All comprehensive investigations
have been performed using intrusive techniques, which are poorly suited to high speed
rotating flows.

Without access to non-intrusive instruments, there seems little point in undertaking
a detailed investigation of the flow inside the CUED tubes. A cursory examination is
useful however, allowing confirmation of earlier findings, providing data for later com-
parison with numerical results, and precipitating the development of a comprehensive
methodology for error analysis in such experiments, that might prove valuable to later
workers with better equipment.

Prior to the main experimental work described in this section, some preliminary in-
vestigations of the velocity fields were made using a technique that only requires meas-
urement of the stagnation pressure and the flow direction. This technique is discussed

in appendix E.

3.5.2 Description of Equipment

Stagnation temperature, stagnation pressure and static pressure were measured at points
in the vortex tubes with "home made’ cylindrical probes of a conventional design, such
as that detailed by Ower and Pankhurst [114] and Benedict [115]. Flow direction was
determined by rotating the stagnation pressure probe until it gave a maximum reading,
and noting the angle between the axis of the vortex tube and the direction faced by the
probe hole. The other two probes were rotated to face the local flow before readings were
taken. A simple traverse arrangement was used to move the probes across the tube ra-
dius.

The probes were calibrated in the flow through a duct driven by a suction fan at its
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outlet. This had the advantage of making the stagnation pressure and temperature within
the duct approximately equal to atmospheric pressure and temperature respectively. Both
the effects of probe inclination to the flow, and variation of the flow speed were investigated®.
Any systematic error was accounted for, and estimates of the magnitude of the random

error were used to calculate the overall uncertainty, in the next section.

3.5.3 Analysis of Errors
Calculation

From the readings of local stagnation pressure F, static pressure P, recovery temperat-
ure Tg, and flow angle to the azimuthal directions, the flow field was estimated accord-

ing to the standard compressible flow relations (see for example Leipmann and Roshko

[116]):

M = Jﬂ{(?)l} (3.16)

{1+ 5 M2} g

Ty = 3.17

° 1—RT+{1+%M2}RT (3.17)
To

T = ———— 3.18

1+ M2 (3-18)

V? = M?*yRT (3.19)

where M is the local Mach number, 7' the static temperature, V? the square of the mag-
nitude of the local velocity vector, and R the recovery factor of the stagnation temper-
ature probe. Any other flow field properties can be easily evaluated from these basic

terms.

“Some details of the calibration procedure are given in appendix B.
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Error evaluation

A matrix technique was employed, wherein all relationships between an observables

vector, x, and results vector, y, are reduced to the linear form
y = T.x, (3.20)
where T is a transformation matrix. The law of propagation of errors then implies
V, =TV, T (3.21)

with V, being the variance matrix for the observables, and Vy, for the results. Each vari-

ance matrix takes the form

2 7 - -
Oz ]&1’11 Oz10z, ]&1’12 02,0z, AI13
- 2 1 -
OyOuy Koy o, K., (o5 I | G
Vi = (3.22)
-~ -~ 2 1
02,00y Koy 02,00, Ks,, 05, Koy, .

where o,; is the absolute error in the :** component of vector z, and K. is the correlation
7 E¥]

between the errors in the i and ;% components of .

If, as in this case, the mapping between the results and observables is non-linear, then
it may be linearised for small changes in the observables 6z, such as those due to errors,

by writing it in the form

i=n ay
Y = ¥l|e=a + ; (8@-

assuming that = has n components. This yields a transformation

) Sz; (3.23)

9y dw du
81‘1 81‘2 8173

T=| % 2w 9w |, (3.24)

81‘1 81‘2 8173
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As an illustrative example, the observables matrix for the stagnation temperature rela-

tionship (3.17) above, is

M
xr, = | Tr | - (3.25)
Ry
For the results matrix, we obtain
yvr, = [To]- (3.26)

The transformation matrix is given by

(o1, oty T,
T= [8M T aRT] (327)
with
o1,  Tn(y—1)M - (1+ 25 M2) TRy (v — 1) M 628)
_ n ,
oM 1 4 Bz0=U 2
—Tg) (14 2 Mm?) 2 M2
o _ | W) (14 20 ; (3.29)
aRT (1 + WQ;IMQRT)
and )
1+ =102
dTy _ + 5 (3.30)

8TR N 14+ %MQRT'

3.5.4 Results

Experimental results will be presented for the flow in tube A in the counterflow config-
uration only. Values for other counterflow tubes were comparable. Flow in the uniflow
configuration differs qualitatively only in that there is no region of reversed flow near
the inlet plane, where the gas leaves through the cold exit.

Figures 3.10, 3.12, 3.11 and 3.13 respectively show typical stagnation and static tem-
perature, and stagnation and static pressure fields over a radial plane through the centre-

line of the tube. In each of the diagrams the upper axis shows the normalised value of the



CHAPTER 3. PRELIMINARY INVESTIGATIONS AND EXPERIMENTS 68

parameter, and the lower axis the normalised error calculated as detailed in the previous
section. In each case the tangential inlet nozzles and the orifice plate were positioned at
an axial distance of 0 m. Note that the full length of the tube is not shown in the diagrams.
The hot tube extends axially to 1300 mm, but under the particular conditions used there
was little variation of the flow parameters outside the region shown. Similarly the cold
tube is 250 mm long, but there was little axial variation beyond 40 mm from the inlet,
and essentially none once 200 mm was reached

The gaps in the colour-maps represent regions of the tube where it was not possible
to get reliable readings. Problems were experienced particularly near the centre-line of
the tube, where it was found that the probe had a large effect on the flow, making read-
ings difficult. Alignment of the probes with the overall flow direction sometimes proved
impossible within 2 mm of the centre-line, as the flow velocities were too small to pro-
duce a visible change in reading when the probe was rotated. Similar problems were
experienced in the periphery of cold tube when close to the orifice. The weak flow here
prevented determination of its direction, although it was possible to get values for both
pressures and the temperature.

Measurements were also unreliable near to the inlet plane. Turbulence levels were
very high there, producing widely fluctuating readings, that made probe alignment im-
possible. The lack of values from the inlet plane prohibits non-dimensionalisation of the
data in the manner described at the beginning of the chapter. An alternative scheme was
adopted wherein the stagnation and static temperatures were normalised by subtracting
the reservoir temperature of the gas, and then dividing by the maximum resulting stag-

nation temperature value, that is

T -1,
* = = 31
T max (To — Tiy) (3:31)

A similar procedure was used to derive a normalised pressure value with respect to at-

mospheric pressure, Py,
P—-P
P* = o . 3.32
max (Po — Patm) (332
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The absolute uncertainty values were normalised by dividing by the maz (T — T},), or
the max (Fy — P) as appropriate. Axial and radial distances have not been normalised,
as retaining the true values provides a better feel for the size of the gradients within the
tube.

Figures 3.14 and 3.15 show radial profiles of swirl and axial velocity at stations spaced
along axis the of the tube. As with the pressure and temperature results, the upper dia-
gram gives the results, while the lower diagram presents details of the uncertainty in
the values. The values are normalised by the maximum swirl velocity that was meas-
ured in the tube®. Again, difficulty in aligning the probes near to the centre-line of the
tube means that values cannot be calculated across a whole radius.

Interpretation of the stagnation temperature field, figure 3.10, is complicated by the
absence of readings near the centre-line, and the fairly large errors in the readings. There
does seem to be evidence of an axially developing radial energy gradient in the first 0.3
m or so of the hot tube. Certainly the outer gas appears to be gaining energy as it passes
down the axis, and by implication the central gas must be losing energy. The axial ve-
locity profiles show that this 0.3 m long region contains the central reversed flow that
leaves through the orifice to become the cold flow. The result is not inconsistent with a
hypothesis that the energy separation develops as the the gas passes along the tube.

Beyond an axial distance of 0.4 m, the radial stagnation temperature distribution be-
comes relatively uniform. It is notable from figure 3.14 that the swirl velocity has de-
cayed substantially by this point. This marks the end of the Ranque-Hilsch separation.

As the gas proceeds further along the tube, towards the hot exit, the stagnation tem-
perature rises. The static temperature beyond 0.4 m shows a similar pattern. This would
suggest that heat transfer from the environment was responsible. In this particular con-
figuration the inlet gas was relatively cool, such that the hot stream produced had a tem-
perature below ambient. As the hot arm of the brass vortex tube was uninsulated during

the experiment, heat transfer from outside would be a likely explanation.

®Note that this is not the same as the maximum swirl velocity within the tube. The fact that measure-
ments near the inlet plane were unsuccessful mean that the true maximum swirl velocity is unknown.
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Figure 3.10: The stagnation temperature field in tube A with a 7.5 mm orifice, operated
at pressure ratio of P;,/P. = 2.4. The upper diagram shows the normalised stagnation
temperature, the lower gives the normalised estimated uncertainty field.
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Figure 3.11: The stagnation pressure field in tube A with a 7.5 mm orifice, operated at a
reservoir pressure of P,/ P. =2.4. The upper diagram shows the normalised stagnation
pressure, the lower gives the normalised estimated uncertainty field.
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Figure 3.12: The static temperature field in tube A with a 7.5 mm orifice, operated at pres-
sure ratio of P,/ P. = 2.4. The upper diagram shows the normalised static temperature,
the lower gives the normalised estimated uncertainty field.



CHAPTER 3. PRELIMINARY INVESTIGATIONS AND EXPERIMENTS 73

Figure 3.13: The static pressure field in tube A with a 7.5 mm orifice, operated at a reser-
voir pressure of F;,/ P. = 2.4. The upper diagram shows the normalised static pressure,
the lower gives the normalised estimated uncertainty field.
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Normalised Swirl Velocities

o
IS
T
\

I

o
N
T
\
A

|
I
N
1
ht
\
!
I

Normalised Swirl Velocity
o o
o o
T T
| 1
\ 4
\

\
\
\
I I

1 1
0 0.002 0.004 0.006 0.008 0.01 0.012

Radius / m
Errors in Normalised Swirl Velocities
01 T T T T
A
§ 0.08 N 7 B
]
- 0.06 B
Q
2
= | B
£ 0.04
(=}
Z0.02f -
0 Il Il Il Il Il Il
0 0.002 0.004 0.006 0.008 0.01 0.012
Radius / m

Figure 3.14: Swirl velocity profiles in tube A with a 7.5 mm orifice, operated at a reservoir
pressure of P, /P. = 2.4. The upper diagram shows the normalised swirl velocities, the
lower gives the normalised estimated uncertainty field. The solid line with symbols rep-
resents data obtained at an axial distance of 0.05 m, the dashed line at 0.2 m, the chained
line at 0.6 m, and the solid line at -0.04 m.
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Normalised Axial Velocities
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Figure 3.15: Axial velocity profiles in tube A with a 7.5 mm orifice, operated at a reservoir
pressure of F;,/P. = 2.4. The upper diagram shows the normalised axial velocities, the
lower gives the normalised estimated uncertainty field. The solid line with symbols rep-
resents data obtained at an axial distance of 0.05 m, the dashed line at 0.2 m, the chained
line at 0.6 m, and the solid line at -0.04 m.
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The swirl velocity profiles, figure 3.14 clearly show that the swirl velocity decays as
the gas travels along the tube. Near to the inlet plane, there is good evidence consistent
with the existence of a forced vortex. At an axial distance of 0.2 m the profile is still com-
parable to a forced vortex, but maximum velocity has reduced by more than one-third.
By 0.6 m, the maximum velocity is greatly reduced, and the profile has become nearly

flat. It is notable that swirl velocities in the cold tube appear to be small.

3.6 Acoustical Measurements

3.6.1 Background
Acoustic Streaming in Vortex Tubes

Kurosaka [8] attributes the energy separation in the vortex tube to acoustic streaming
caused by the vortex whistle. Assuming the flow to be at steady state and using an order
of magnitude argument, Kurosaka divides the flow radially into layers. Working radi-
ally inwards he identifies three regions illustrated by figure 3.16, (a) a steady boundary
layer adjacent to the wall, (b) a middle layer, stretching from the inner edge of the steady
boundary layer to the inner edge of the unsteady boundary layer, and, (c) an inviscid
core.

By solving the Navier-Stokes and energy equations in the middle layer and inviscid
core, using the method of matched asymptotic expansions after Van Dyke [117], Kur-
osaka produces an expression for the magnitude of the streaming velocity at the inner
edge (i.e. adjacent to the inviscid core) of the middle layer v” in terms of the angular fre-

quency of the applied disturbance. Modelling a vortex tube flow as a Rankine vortex,

vo(r) = Qr (0<r<rY) (3.33)
vo(r) = Tfr (r<r<r,)

where I is the circulation at r*, the interface radius between the forced and free vortex
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Tube Wall

Rotating
Flow

Figure 3.16: The layers identified by Kurosaka.

components, Kurosaka derives a relationship between the swirl (2 and the expected an-

gular frequency of disturbances generated by the vortex whistle w,

r
w=F(jm| — 14+ 172" —, (3.34)
T
where m is the circumferential wavenumber of the disturbance and A = r,/r*. This,

combined with the expression for the streaming velocity, shows that the magnitude of

the streaming at the boundary between the middle layer and the inviscid core is given
by

0. %¢
r'/r,

(3.35)

v"(|n] = o) =
with
3 [m|

= T = T e — ] (3:36)

where n is the radial co-ordinate measured inwards from the tube wall®, and v. is the
magnitude of the steady swirl velocity at the interface between the middle layer and the

the core. As expression (3.35) implies that v”(|n| — oc) > 0 at all times, any streaming

fIn this context, [n| — oo should be interpreted in the expansion matching sense of “as the middle layer
merges into the inviscid core.”
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must be in the same direction as the mean flow.

When m =1, ¢, and hence expression (3.35) become singular. Kurosaka concludes
that should acoustic waves of the angular frequency predicted when m = 1 in equation
(3.34) be present, then substantial streaming is likely. Since any streaming will always
be in the direction of the mean flow, it will tend to supplement that flow. The Rankine
vortex would tend to be deformed, with an excess of angular momentum building up
at its periphery. Considerations elsewhere show that such a conversion would tend to
cause an energy separation of the form found in the vortex tube.

To investigate his theory, Kurosaka measured the acoustic output of a modified, com-
mercial vortex tube, operating in the uniflow form. He obtained a series of spectra sim-
ilar to that shown in figure 3.17, with peaks at discrete frequencies, clearly showing har-
monics.

By drilling out the sides of the tube, and installing tuned acoustic suppressors, Kuro-
saka attempted to attenuate the disturbances at a particular inlet pressure. By gradually
increasing the inlet pressure, he observed the energy separation of his tube develop in
the normal way, until the pressure was such that acoustic disturbances are attenuated,
yielding spectra such as that in figure 3.18. At this point there was a fairly substantial
drop in the separation performance.

It is clear that there must be some relationship between Kurosaka’s acoustic attenu-
ators and the reduction in performance of his tube. The general validity of the acoustic
streaming explanation is questionable however. Escudier [13] notes that Hilsch [4] and
Westley [9, 109, 111] make no mention of a whistling sound, and suggests that the main
effect of installing acoustic suppressors would be to change the basic flow structure from
that of a slightly asymmetric precessing vortex core (giving a spiral breakdown”) to a
symmetric annular flow (giving a bubble breakdown), with a consequent loss in discrete
frequency excitation. In along tube, such a change in the flow might not have a dramatic

effect on the overall outcome. However, with a short® tube such as Kurosaka’s, it would

“The phenomenon of vortex breakdown is discussed in chapter 2.
8Kurosaka’s tube had a length to diameter ratio of about 3.1. Compare this with Hilsch’s shortest tube,
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Figure 3.17: The spectral density of the acoustic signal obtained by Kurosaka from a uni-
flow vortex tube of length 41.9 mm, and internal diameter 17.5 mm, operated on air at
an inlet gauge pressure of 1.02 x (atmospheric), or approximately 100 kPa (gauge). Taken
from reference [8] .
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Figure 3.18: The spectral density of the acoustic signal obtained by Kurosaka from a uni-
flow vortex tube of length 41.9 mm, and internal diameter 17.5 mm, operated on air at an
inlet gauge pressure of 1.02 x (atmospheric) [i.e. approximately 100 kPa (gauge)], when
titted with tuned acoustic suppressors. Taken from reference [8].
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dominate the flow. The breakdown bubble would most likely fill the tube, severely re-
ducing any energy separation, as well as destroying the acoustical output.

There are further reasons to question the acoustic streaming explanation. Perhaps the
greatest is the experimental evidence that points to a development of the energy separ-
ation as the flow progresses along the axis of the vortex tube. Although they use coun-
terflow tubes® Wesley [109], for example finds an optimum length/diameter (L /D) ratio
much greater than unity, while Soni and Thompson [113] achieve maximum efficiency at
L/D > 45. If there were no improvement in the energy separation along the axis, in other
words if the mechanism was a planar phenomenon then we would expect the optimum
L/D to be small. The previous section presented clear evidence of a gradual develop-
ment, as does Reynolds'® [63]. While the stagnation temperature along the axis increases
with distance from the inlet, the radial stagnation temperature gradient becomes steeper.
In contrast, acoustic streaming would provide a relatively planar effect, independent of
the tube length.

A second difficulty is the behaviour of the energy separation in Kurosaka’s tube as the
pressure, and hence whistling frequency, are increased beyond that at which the acous-
tic suppressors operate. Figure 3.19 shows that the decline in performance and acoustic
output at the absorbed frequency is dramatic. When the pressure is increased further,
there is no evidence of a sudden resumption of performance, as might be expected with
aresonance phenomenon. Indeed the pressure increases to 250 kPa, nearly 2.5 times that
at which the acoustics suppressors came into operation, before the previous maximum is
attained, supporting Escudier’s supposition of a fundamental change in the flow regime
to a ‘less efficient” state precipitated by the presence of the acoustic suppressors.

A further anomaly may be seen in comparison with the work of McDuffie [118], who
also measures the sound output from a vortex tube, of a similar diameter to Kurosaka.

He finds no evidence of the frequencies detected by Kurosaka, although he does identify

which had a ratio of 17. The CUED tubes have L/ D = 50.
The relationship between the interpretation of data from counter and uniflow tubes is discussed in the
previous chapter.
19Reynolds investigates a counterflow tube.
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an unexplained ultrasonic peak near 31 kHz when his tube is configured for optimum

performance.

Application to the CUED vortex tubes

To investigate the acoustic influences in the CUED vortex tubes, a number of sound re-
cordings were made at various points around the three tubes, and their frequency spec-
tra analysed. Measurements were taken at a number of inlet pressures across the avail-
able range, and at conditions which did and did not promote significant energy separa-

tion.

The frequency-swirl relationship, equation (3.34), shows that the fundamental fre-
quency produced by the vortex whistle is given by

V(r*)r*.

fl = 27rr2 (337)

To estimate the maximum value of V (r*) r*, and hence the maximum expected funda-
mental frequency, consider the inlet plane of tube A. Assume that the free vortex part
of the Rankine vortex is very small here, and that the gas enters the tube at the speed of
sound. This gives r* ~ 0.013 mm and V' (r*) r* ~ 330 m/s, giving f; ~ 4.04 kHz. Kuro-
saka finds three substantial peaks in his spectra. Further assuming that the CUED tubes
produce similar spectra, we ideally need to be able to examine spectral components up
to 12 kHz. However, the flow mapping experiments did not produce any evidence of

swirling faster than 250 m /s, which would reduce the maximum likely frequency to just

over 9 kHz.

The apparatus assembled to investigate the possible existence of such acoustic stream-

ing is described in the next section.
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Figure 3.19: Graph illustrating the behaviour of the energy separation, and the acoustical
output from Kurosaka'’s tube as the excitation (whistling) frequency is increased, first to
that absorbed by the acoustic suppressors, and then beyond. In the top figure, the upper
curves show the variation of the magnitudes of the first and second harmonics with the
inlet pressure. The lower curve illustrates the dependence of the frequency of the first
harmonic on the inlet pressure. Turning to the bottom figure, the upper curve shows the
inlet temperature at each inlet pressure, whereas the lower curve displays the measured
temperature at the centre of the inlet plane. Taken from reference [8].



CHAPTER 3. PRELIMINARY INVESTIGATIONS AND EXPERIMENTS 84

3.6.2 Description of Equipment

Sound generated by the vortex tubes was recorded digitally, using a microphone con-
nected to the audio input port of an Apple Macintosh Classic II computer. The Classic
II machine incorporates an eight bit analogue to digital (A-D) converter designed spe-
cifically for audio uses, and supporting sampling frequencies up to 22.05 kHz. Using
the ‘Soundbuilder” software [119] , sound samples could be saved to disk in Microsoft
Wave (.wav) format and exported to other systems for later analysis. In particular the
numerical package ‘Matlab” running on an HP-700 Unix workstation was used for sig-
nal processing.

Analysis in the previous section suggested that noise with significant spectral com-
ponents up to 10 kHz should be expected from the CUED vortex tubes. The sampling
theorem!! then requires a minimum sampling rate of 20 kHz to avoid aliasing. Since the
Macintosh can only operate at a discrete number of sampling rates, the recordings were
made at the only rate exceeding 20 kHz, namely 22.05 kHz. No attempt was made to
band-limit the signal recorded, through filtering, but the shape of the resultant power
spectra, such as that shown in figure 3.21, and in particular their rapid decline towards
the Nyquist frequency'?, suggests the results are competent.

For the majority of readings, the level of noise was such that it was necessary to re-
duce the voltage produced by the microphone to avoid swamping the A-D converter.
This was achieved with a simple voltage divider circuit giving a voltage attenuation of
10:1. Tests with a tuning fork indicated that the circuit had little effect on the phase of

the recorded signal.

1The Sampling Theorem states that for a digital recording of a signal to be useful (and unique), the
sampling rate f, used to record the signal must be at least twice that of the highest frequency spectral
component of that signal (see for example, Gabel and Roberts [120]). If the sampling rate is insufficient, the
spectral components of frequencies higher than the Nyquist critical frequency, f. = f./2 are folded (aliased)
back into the the range (— f., f.), as is shown by Press, Teukolsky, et al. [121].

2Gince aliased spectral components are folded back into the spectrum, an incompetently sampled (i.e.
aliased) signal will have a Fourier transform that tends to a finite value as the Nyquist frequency is ap-
proached. The spectrum of a competently sampled signal will tend to a low value at the Nyquist frequency.
Press, Teukolsky, et al. [121] suggest that this fact forms a useful rule of thumb for checking sampled
signals.
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In ideal circumstances, acoustic measurements should be taken in an anechoic cham-
ber. This was not possible in this case. Instead the sound recordings were made in a very
noisy environment, indeed in the same laboratory as the compressor, and so are likely
to be contaminated with extraneous noises. Fortunately, the microphone was highly dir-
ectional, and in the main only picked up sounds from its immediate environment. Ad-
ditionally the attenuation device described above made it possible to move the micro-
phone close to the tube, reducing any contamination still further. Aural inspection of

the recordings is unable to detect the extraneous sound.

Nevertheless recordings of the compressor alone were taken, and their spectral con-
tent compared to that of the tube noise samples. Attempts were made to subtract the
two signals to reduce the magnitudes of the compressor components in the spectra. Us-

ing the linear properties of Fourier transforms

Ftube(jw) = Ftotal(jw) - Fcomp'r (J(.U) (338)

and then taking the inverse transform of the result

frupe(t) = FH{ Frupe(Jw) } (3.39)

we can generate a signal, f;...(¢) that represents the acoustical disturbances produced by

the tube alone.

Before performing the subtraction (equation 3.38), it was necessary to match the phase
and magnitude of the two signals. As the compressor signals showed a distinct, charac-
teristic, peak near 86 Hz, (figure 3.20) this was used as a reference for scaling the mag-
nitude and fixing the phase of the compressor signal. The magnitude of the peak in the
Fourier transform of each signal was compared, and the compressor signal scaled to give
equal magnitudes. In addition the phase of all the components in the compressor sig-
nal was advanced or retarded as necessary to make the signals in phase at the 90 Hz

peak. For some signals the subtraction technique was unsuccessful. This would seem
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Figure 3.20: Power spectral density of a compressor signal.

to be due to the fact that relatively small variations in the positioning of the microphone
made substantial differences to the recorded compressor signal, in some cases too large
for the simple technique described to cope with. In these cases the ‘noise’ was eliminated

‘manually” by comparing the traces.

3.6.3 Results

Samples were taken at various points around all three of the tubes, operating over the
range of possible conditions. A typical set of results, obtained with the 26 mm tube op-
erated in a counterflow configuration with a 7.5 mm diameter orifice at an inlet pressure
of approximately 300 kPa (P;,/ P. = 2.97), will be presented as representative.

Figure 3.21 shows the power spectral density (PSD) of the signal recorded near the
valve. There are no obvious peaks, and the result is in marked contrast to those of Kur-
osaka. The relatively flat profile was characteristic of all the recordings taken near the

valve, and the relatively high frequency content in the band between 3000 Hz and 6000
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Hz would appear to be due to the ‘hissing” of the air as it impacts on the angled sides of

the conical valve insert.

PSD of a sample taken near the valve
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Figure 3.21: The power spectral density of the acoustic disturbances in the 26 mm tube,
measured near the valve.

Spectral densities of the signals obtained near the inlet nozzles and near the cold out-
lets are shown in figures 3.22 and 3.23 respectively. Again, they are both substantially
different from Kurosaka’s results. One curious feature observable in both is their marked
‘peakiness’. Considering figure 3.23, the first peak visible is at approximately 344 Hz,
with the next one at 1033 Hz, then 1636 Hz and so on giving a repeating pattern of first a
698 Hz jump followed by a 603 Hz jump. The pattern was always most marked in signals
taken at the cold exit, and for the most part did not vary significantly either with oper-
ating conditions, or indeed with the tube in use. There was no evidence of the peaks if
the tube was run in a uniflow setup, or if the orifice was removed completely.

It would appear from this evidence that the peaks are due to longitudinal oscillations
in the cold tube of each of the rigs caused by blowing over the orifice plate, and are en-

tirely unrelated to any possible acoustic streaming. Three facts support this conclusion.
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Figure 3.22: The power spectral density of the acoustic disturbances in the 26 mm tube,

measured near the inlet nozzles.
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Figure 3.23: The power spectral density of the acoustic disturbances in the 26 mm tube,

measured near the cold outlet.
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Firstly, that the peaks are most visible in recordings taken near the cold exit; secondly
that they were not visible in uniflow configurations or when the orifice was removed;
and thirdly the approximately 1:3:5:7... relationship of the frequencies, which would be
expected from longitudinal vibrations in a pipe effectively sealed at one end. For each
rig the cold tube was 250 mm long. This equates to a fundamental frequency of longit-
udinal vibrations of approximately 340 Hz, corresponding well with the first frequency
quoted above. The variations in step between the detected harmonics would appear to
be due to the limited resolution of the algorithm used in calculating the spectral density,
since the average separation is 650 Hz, nearly twice 344 Hz, as would be anticipated.

If the tubes were run without any orifice plate present at all, and with the hot valve
shut tightly, such as to encourage the vortex to propagate down the cold tube, then there
was a significant change in the acoustic output, aside from that mentioned already. A
loud whistle became audible, and this showed up clearly in the spectra. Figure 3.24 shows
aresult obtained from a recording near the cold exit of the 26 mm tube operating without
an orifice plate at an inlet pressure of 276 kPa (P, / P, = 2.73). The first part of the spec-
trum, magnified in figure 3.25 shows an acoustic disturbance reminiscent of Kurosaka’s
result, with the three peaks at approximately 400 Hz, 800Hz and 1200 Hz appearing to
be a fundamental with two harmonics.

Recordings taken at other points around the tube did not show such clear peaks, in-
dicating that the source of the disturbances was indeed near the cold outlet. Slowly in-
serting a solid plastic rod of 8 mm diameter for a distance 30 mm or more into the cold
exit and such that it was parallel to and coincident with the major axis of the tube, elimin-
ated the whistle and spectral peaks. If the rod was inserted in a similar orientation, but
towards the periphery of the tube, little effect on the noise was observed. This would
tend to locate the source of the noise even more precisely, to the behaviour of the central
region of the vortex as it leaves the tube. In contrast to Kurosaka’s observations, probes
inserted radially into the tube had little influence on the disturbances.

The swirl distribution near the cold exit was measured using the intrusive probes de-

scribed earlier in the chapter. Limits on the values are shown by the upper and lower
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Figure 3.24: The power spectral density of the acoustic disturbances in the 26 mm tube
run without an orifice plate, measured near the cold outlet.
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Figure 3.25: Close up of the power spectral density of the acoustic disturbances in the 26

mm tube run without an orifice plate, measured near the cold outlet, for frequencies up
to 2 kHz.
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Figure 3.26: The swirl velocity distribution near the outlet of the cold tube. The upper
and lower solid lines show the limits on the velocity distribution, accounting for estim-
ated uncertainties, while the middle line gives the mean value. The dashed line illus-
trates an attempt to model the upper limit on the velocity as a Rankine vortex.
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solid lines in figure 3.26. In order to calculate the disturbance frequency associated with

the distributions, it is necessary to approximate them as a Rankine vortex.

As the frequency-swirl relationship only applies to inviscid flow, the approximation
will be limited to swirl values lying outside the boundary layer on the cylindrical wall.
The extent of the boundary layer is very difficult to identify, but the sudden decline in
swirl velocity beyond a radius of 0.011 m suggests that the boundary layer starts here.
This radius will be used as the effective radius of the tube in the frequency estimation,

that is it will be assumed r, = 0.011 m.

The dashed line in figure 3.26 shows the Rankine vortex approximation to the upper

limit on the swirl distribution, which has parameters

w = 4.9292 x 10° (3.40)
I' = 0.2933 (3.41)
r* = 0.0077 (3.42)
ro = 0.011. (3.43)

The values werearrived atby a trial and error process, employing a few guidelines. Firstly
the forced vortex line is tangential to the forced vortex part of the distribution. Secondly,
I' for the free vortex approximation was calculated by taking a representative point on
the measured line, near to the boundary layer. The interface radius r* was estimated as
the intersection of the free and forced approximations. Values were also estimated for

the lower limit on the swirl distribution.

Applying the frequency-swirl relationship, equation (3.34) to the Rankine vortex ap-
proximations predicts a fundamental frequency lying in the range 323 Hz < f < 385 Hz.
This partly overlaps with the measured frequency, which the spectral density plot shows
to lie in the range 350 Hz < f < 420 Hz. That the two results overlap quite well further
confirms that the pure tone is caused by the interaction of the vortex with the still atmo-

sphere at the cold exit. Increasing the inlet pressure of the gas supplied to the tube, and
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thence the swirling velocity, produced a rise in the whistle frequency, again as would be
expected from a vortex whistle.

Such results would seem to confirm Escudier’s hypothesis regarding Kurosaka'’s ex-
periment. In the normal uniflow and counterflow configurations, when the vortex is
forced to travel down the long (L/D = 50) hot tube, no particular evidence of acoustical
disturbances was found even though a significant temperature separation was evident.
When the orifice plate was removed entirely, with the vortex traversing only the much
shorter cold tube (L/D = 10), organised periodic disturbances, emanating from the cent-
ral region of the exit to the cold tube and similar to those observed by Kurosaka, were
found. The appearance of the disturbances must be directly related to the distance the
vortex travels before leaving the tube, and is mostly due to the precessing of the vor-
tex core as the strongly swirling flow enters the still atmosphere. When the vortex only
travels the distance of the short cold tube it is still strong enough to produce acoustic dis-
turbances as it enters the still atmosphere. After travelling the much longer length of the
hot tube though, viscous dissipation has reduced the strength of the vortex to the extent
that acoustical effects cannot be detected. Whatever their cause though, it seems safe to
conclude Kurosaka’s spinning waves were related only to the shortness of his apparatus,

and not directly to the energy separation he found.

3.7 Discussion

3.7.1 Scope

We have considered information useful for two distinct, but related objectives regard-
ing the vortex tube. The earlier sections of the chapter, namely the dimensional analysis
along with the two similarity relationships, constitute what could be termed an “external’
investigation. Their results may help perhaps with attempts to model the behaviour of
Ranque-Hilsch tubes. In contrast the later sections presenting the mapping of the flow

and the acoustical measurements provide a more “internal” picture of the tube, perhaps
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providing a key into the mechanism underlying the energy separation. This section at-
tempts not only to amplify the distinct conclusions we can draw from the work, but also

to go some way towards reconciling those conclusions with each other.

3.7.2 External Measurements

Stephan’s result raises a number of points. His original expression (3.1) can be re-written,

(AT,)

oeme o f (). (3.44)

AT =
c Tz

Comparing this to the results of the dimensional analysis for a single tube run on a single

gas at a constant reservoir temperature

At =5 (S ) (3.45)

suggests that for that single tube, by writing

@%szﬁ<%v (3.46)

[

we can separate the variables to yield

Aﬁzﬁ(%ﬁxﬁwa. (3.47)

In this expression f; = AT could be interpreted as representing the separative power
of the vortex tube, characteristic of the maximum temperature difference that can be ob-
tained under any particular circumstances. Similarly f, would represent how that separ-
ative power was used to produce differing amounts of hot and cold gas. It would seem
reasonable to extend this result to the other integrated variables. This idea is developed

turther in chapter 6.

Stephan’s result was found to apply for anumber of geometrically similar tubes, whereas



CHAPTER 3. PRELIMINARY INVESTIGATIONS AND EXPERIMENTS 95

the conclusion of the dimensional analysis was restricted to a single tube. Their recon-
ciliation, however, suggests that the result of the dimensional analysis would also model
well a range of geometrically similar tubes. Consequently, the independent parameters
that were rendered invariant when specialising the dimensional analysis from a general
result for geometrically similar installations, to a single tube, cannot have a strong influ-

ence on the performance of geometrically similar tubes.

3.7.3 Internal Measurements

The detailed investigations of the flow patterns have produced results consistent with
the findings of others. One particular feature to draw from the work are the clear re-
gions where there is axial development of the energy separation. Whatever causes the
radially outwards energy transfer in the vortex tube needs time to do its work, and the-
ories suggesting an instant process should be considered very carefully in this light.
Momentarily casting aside the acoustical investigations, the applicability of acous-
tic streaming to vortex tube energy separation seems debatable. The proposed mechan-
ism allows little scope for any re-enforcement of the energy separation as the flow pro-
gresses axially along the tube. Considering the evidence together, it would seem reas-
onable to deduce that acoustic streaming does not play a major part in producing the
Ranque-Hilsch effect. To rule out acoustic effects in the vortex tube altogether would be
rash though, as their influence in more general rotating flows is well known. It is safe to
conclude that acoustic streaming by the vortex whistle is not responsible for the Ranque-
Hilsch effect, although organised disturbances could somehow affect the velocity distri-

bution in the tube in such a way as to encourage it.

3.8 Closure

This chapter began by considering the physical variables that might be expected to affect

the performance of vortex tubes. From these, a set of dimensionless quantities was de-
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rived. Further examination suggested that the operating point of any particular vortex
tube could be characterised by two variables, P,/ P. and y., which would also serve to
characterise approximately any set of geometrically similar vortex tubes.

Examination of the dependence of vortex tube performance on x. over a range of
pressures confirmed that the two parameter model was plausible, and further sugges-
ted that the correct form of function to model the behaviour was a product between in-
dependent functions of each parameter alone.

A series of experiments to investigate the internal flow pattern in the vortex tubes
yielded results for the most part consistent with preceding work. Flow visualisation
provided a general impression of the flow, and allowed an estimation of flow velocit-
ies within the tube. Mapping of the flow field with intrusive probes produced a more
detailed picture of the flow, complete with a thorough analysis of the inaccuracies of the
procedures employed.

The possibility of an acoustic streaming mechanism being responsible for the energy
flux in the vortex tube, as suggested by Kurosaka [8], was considered in some detail. An
experimental study identified a number of acoustic disturbances in the tubes, but ruled
out acoustic streaming as a major influence in the Ranque-Hilsch effect. The results were
consistent with the interpretation advanced by Escudier [13].

With the results detailed in this chapter, experimental work on the vortex tube has
been taken about as far as is possible with the available equipment. Foundations have

been laid for the following, more theoretical, examinations of the vortex tube.



Chapter 4

Computation of Ranque-Hilsch Tube
Type Flows

4.1 Objectives

Preceding chapters have highlighted some significant features of flows in Ranque-Hilsch
tubes. Internal investigations have shown the basic nature of the flow, but their scope is
severely limited by the disruption intrusive probes bring. Some external acoustic meas-
urements have suggested that the direct influence of acoustical disturbances on the flow
is small

One curious observation from the literature survey was the dearth of numerical stud-
ies directed at the vortex tube. In the light of the difficulties of experimental study, com-
puter based investigation would seem an attractive approach. Having said that, the en-
ergy separation in the vortex tube is a complex phenomenon, and any numerical solu-
tion that attempts to predict it will require a fair degree of sophistication even to obtain

a qualitatively valid result.

To develop such a model represents a considerable effort. For reasons of practicality,
the remit here was reduced to consideration of a basic qualitatively useful model that

could be employed to investigate some of the important features of the Ranque-Hilsch

97
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tube. In this capacity the focus was on computing the flow pattern accurately. Calcula-
tions of the temperature field were added when results for the flow were satisfactory.
The chapter begins by discussing the simplifications and assumptions that limit the
physical model underlying the code. Next, the steps taken to account for the effects of
turbulence are presented, after which the numerical method employed is described. A
number of benchmark cases were run using the code to verify its correct functioning,
and the results of these test runs are discussed briefly. Towards the end of the chapter,
the attempts to simulate Ranque-Hilsch tube flows are described, and some conclusions

drawn from the outcome.

4.2 Physical Modelling

4.2.1 Assumptions and Simplifications

The scope of the numerical model was reduced through a number of assumptions:

Steady-State

The model only aims to calculate steady-state solutions. This permits the time depend-
ent terms in the Navier-Stokes equations to be abandoned. It also increases the range of
solution techniques available, as there is no need for intermediate solutions obtained on

the way to convergence to satisfy the Navier-Stokes equations.

Axisymmetry

Development of a full three-dimensional solver is outside the scope of this work. Code
was developed in cylindrical co-ordinates, assuming axi-symmetry about the centre-line
of the vortex tube. This is a significant limitation, as it is unlikely that the flow is axi-
symmetric in reality, but has the advantage of allowing the solution of three velocity scal-

ars, while only requiring the complexity associated with a two-dimensional solution.
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Compressibility

Provision was made in the code for non-uniform density calculations. The density itself
could be estimated using the equation of state with the calculated pressure and temper-

ature values.

Compressible calculations should be limited to cases that might be described as “flow
with appreciable change of density’, where the character of the equations remains el-
liptic. Fortunately such conditions exist within the vortex tube under an axisymmetric
approximation, where the density variations are caused predominantly by the effects of
swirl, rather than velocity and pressure variations in the ‘main” axial and radial flow dir-
ections. Problems might be anticipated with more general compressible flows, where the

axial and radial velocity fields are more strongly coupled with the density.

In practice, compressible calculations were found to be very time consuming, and so,
many runs were performed under an incompressible assumption. Again, this represents
a further level of approximation to real vortex tube flows. While the effect on the flow
pattern is comparatively small, the lack of compressibility and its associated expansion

work, removes any possibility of cooling.

One compromise that was found useful was to calculate the flow pattern using an
assumption of incompressibility, but to allow density variations in the energy equation.
The pressure used to calculate the density was taken directly from the result of the in-
compressible calculation. A similar approximation was employed in an analytical study

by Linderstrom-Lang [40].

Turbulence

Flow in the vortex tube is turbulent. The steady state assumption, and practical consid-

erations dictate that a turbulence model must be employed to represent its effects.
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Domain limitations

The flow in the inlet plane, near the tangential nozzles is very complex. No attempt will
be made to simulate this region. Inlet conditions will be limited to the radial induction

of a swirling flow through an annular slit.

4.2.2 The Vorticity-Streamfunction Formulation
Comments

Primitive variable numerical solutions of the Navier-Stokes equations require careful
specification in order to avoid difficulties caused by the pressure solution. Many meth-
ods have been developed to overcome such problems, see Patankar [122] for one ex-
ample, but the solution of strongly swirling jet driven flows still represent a difficult situ-
ation. In many ways the assumption of axial symmetry aggravates the problem, as the
major velocity component, the swirl velocity, responsible for the peculiar features of the
flow, including most of the pressure variations, is reduced almost to the capacity of a
convected property albeit one with a direct coupling to the axial and radial velocities.

In an attempt to avoid the difficulties that primitive variable solutions can experi-
ence, it was decided to adopt the so-called vorticity-streamfunction formulation of the
radial and axial Navier-Stokes equations which eliminates explicit pressure terms from
the equations solved. An additional advantage, in an axisymmetric case, is a reduction
in the number of variables that must be solved, from three (axial and radial velocities,
and pressure) to two (vorticity and streamfunction).

The vorticity-streamfunction formulation offers problems of its own, however. Firstly,
the variables solved are a level of abstraction removed from the velocity and pressures
with which one is familiar. To recover the more easily understood quantities a substan-
tial amount of post-processing is required. Secondly the specification of boundary con-
ditions is made more difficult, again by the need to couch them in terms of the vorticity

and streamfunction. Lastly, to keep the complexity of the equations within reasonable
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bounds, the choice of turbulence model, if required, is limited to one which can be incor-
porated in the governing equations without altering their form from the laminar case.
The analysis presented in this section draws heavily on the work of Gosman et al. [50],
although a number of changes have been incorporated to specialise the solution the vor-
tex tube. Note that the analysis is general in that it allows scope for density fluctuations,
whereas the majority of vorticity-streamfunction calculations cited in the literature are

limited to incompressible flow.

Derivation

Define the vorticity in cylindrical co-ordinates'

ou Ow
“=9: or ()
and the streamfunction ¢ such that
pw = 19y (4.2)
r or
pu = _18_1/) (4.3)
r 0z

The continuity, radial momentum and axial momentum equations may be reformulated
in terms of these two quantities in such a way that pressure does not explicitly appear.
For turbulent flows it is necessary to perform the analysis with the equations already
time averaged, and to assume that closure is achieved with a stress transport model that
relates the turbulence correlations to gradients of the mean quantities in such a way that
the form of the equations is unchanged from that in laminar flow, if the effects of the
turbulence are represented by an eddy viscosity.

Analysis begins by cross-differentiating the axial and radial momentum equations,

'The analysis in this chapter will be presented in cylindrical co-ordinates. The original derivation for
the vorticity and stream function equations was performed in generalised orthogonal co-ordinates, after
Gosman [50]. This allows the solution of vorticity-streamfunction problems in Cartesian co-ordinates,
which is useful when verifying the code.
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and then subtracting one from the other to eliminate the pressure term. A considerable
quantity of algebra is required to introduce the streamfunction and vorticity, giving the

vorticity equation

1[0 (wov) 0 (wog)| 1[0 (wituf)dp 0 (w'+u) Op Lﬁ(.?)
r |0z \r Or or \r 0z r | Oor 2 Jdz 0Oz 2 or [ r2oz pY
(4.4)

where S incorporates all terms that involve viscosity and might be considered to repres-

ent the effects of shear work on the vorticity. We can write this term as?

s=1v. {ﬁv (&)} + S, (4.5)
r r
with
o 2 e wda i dud 9 (0w 190w) o
Ope r 0z Ordz  Or 022 0z Or? Oordz0r Or\0z r Or 0z
2 0 (0w 10(ru)\ Ju.
= [—@(at o ) ar]' (4.6)

Note that the velocity terms have not been eliminated entirely from the left-hand side
of equation (4.4). There are three reasons for this. Firstly the introduction of vorticity
squared terms that would result from their removal would complicate the numerical
solution. Secondly the remaining terms vanish in incompressible calculations, and for
compressible flows can be quite adequately incorporated as a source term, evaluated us-
ing the velocity and density values from the previous sweep of the domain. The velocity
terms incorporated in S can also be adequately evaluated as a source term using the pre-

vious solution approximation.

For convenience when discussing the iterative solver in the later parts of the chapter,

%pi. in this expression is the effective viscosity and is described in section 4.3.1.
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all the equations in this section will be written in a common format as follows

o (o 0 [ 0 9 a(Ce)) d 9(Co) -
e G R | B L e B L e R R

In general the first term in the equation will have convective properties, the second and

third terms will be diffusive in nature, and the final term is a source. With this formula-

tion, the vorticity equation becomes

L0 (wdp 9 (wdy o, 0(m2)\ o, 0(n2)
T{@(?E)‘E(?E)}‘@ AR ml R L

d (pv?) d (w*+u*\dp 0 [w+u?\ dp 5 B
+’“{— o "o\ Jama\ T2 e Ty =0

3

where the variable solved for is w/r.
The streamfunction equation is derived from the continuity equation by replacing the
products of density and velocity using the definitions of the streamfunction given above.

The resulting equation has no diffusive terms and may be written in the standard format

o (1 ap) o (1 oy Wy
_a{ﬁrg} — E{FTE} —r (;) = 0. (4.9)

Equations (4.8) and (4.9) represent the heart of the solver.

as

4.2.3 The Swirl Equation

Applying the assumption of axisymmetry to the momentum equation in the circumfer-
ential direction produces considerable simplification. Elimination of the axial and radial
velocities by substituting the streamfunction expressions, and writing the result in the

the standard form of equation (4.7) gives

o (ow\ o oy o , o)\ o , 9(8))_
E(UW)_E(H)@)_OZ (/LST - — 5, \Her - =0, (4.10)
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to solve for ro.

4.2.4 The Energy Equation

Under the assumptions outlined earlier, and accounting for the contribution of the turbu-
lent kinetic energy to the total energy budget, the equation for the transport of stagnation

enthalpy k¢ written in the standard form is

3 (45)-5 ()] [ (2 - 2 2-5)
—%(ner{(l—g—h <az/z>)+ __L) i

|
)
)

.) = 0. (411)

0
2 ef-2252) - )

d
L retrr) — o,

The functions, ®, and @, are given by

B 0 [ u? 2 Jw 10(ru) ou  v?
& = 5(5)—3 (@*? or )+ Yo T T (412)
0 [w? 2 Jw 10(ru) ow
. = 5(7) w(aﬁ; or )+ o (4.13)

The transport coefficient oy, is the turbulent Prandtl number for enthalpy transport, or

as we are dealing with perfect gases, temperature diffusion. By definition we have

o) = “;Cp (4.14)

with ). the effective thermal conductivity of the gas. Clearly in the laminar case A. is
equal to the molecular conductivity of the gas. A similar role is played in the transport

of the turbulent kinetic energy by oy..
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4.3 Turbulence Modelling

4.3.1 Necessity

It has been established that the flow within the vortex tube is turbulent. To account for
this, we are attempting to solve the time averaged Navier-Stokes equations. In order
to provide closure for the fluctuating components a certain amount of empiricism is re-
quired in the form of a turbulence model. The reader will recall that our adoption of
a vorticity-streamfunction formulation essentially limits our choice to stress transport
models that do not alter the basic form of the equations to be solved. In this context the
problem reduces to one of how to calculate the turbulent part x; of the expression for the

effective viscosity

fre = fit + pt (4.15)

which replaces the “pure’ laminar value, ¢ in the Navier-Stokes equations.

This section briefly describes the two-equation £—e¢ model incorporated into the code,
and considers some of the modifications that can be made to better model turbulence in

swirling flow.

4.3.2 The Two-Equation Model

The two equation model, as developed by Launder and Jones [43], solves transport equa-
tions over the entire flow field for two properties that can be used to characterise the tur-
bulence at any point, specifically the turbulent kinetic energy & and the turbulent dissip-

ation rate ¢. Values for the turbulent viscosity can be estimated from

12
e = C#P?, (4.16)

where C, is an empirical constant.

Adopting the standard format of presentation, the transport equations solved in cyl-
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indrical co-ordinates are

d [ ap\ 0 [ 9 & (ru 0k\ 9 [ru ok B
U ) (k50 )| e (o)~ (e oo =

(4.17)

D (P0Y 0 (6] 0 (mde) D ( o o)
{02 (eﬁr)_ar (682)}_82 (raﬁaz)_ar (Taﬁar - ClkPS_CQ k = 0
(4.18)
The production of turbulent kinetic energy is given by
P. = 2 @2+ @2+<E)2 + aw_|_@2_|_ @2+ g<2>2
s = He 0z or r or 0z 0z rar r

(4.19)
Conventionally (see Jones and Launder [43]) the empirical model constants are taken to

be as shown in table 4.1.

C,u OK T¢ Cl CQ
0.09 109122144192

Table 4.1: The empirical constants used in the standard & — ¢ turbulence model.

4.3.3 Modifications of the Two-Equation Model

The effects of anisotropic turbulence in rotating flows cannot be accommodated directly
by the two-equation model. A number of modifications to the model have been sugges-
ted in order to improve its performance in strongly swirling flows. Some calculations
discussed in this thesis were accomplished using the modification suggested by Laun-
der et al. [123], based on a Richardson number correction to the turbulence energy dis-

sipation equation.
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In this context the turbulent Richardson number is defined

B k* v 9 (rv)

Ri;, = ——
erz Or

(4.20)

The constant C in the turbulence dissipation equation (4.18) is replaced by C;, (1 — C¢ Ri;)

where a series of numerical experiments by Launder have suggested that Cc = 0.2.

4.4 Numerical Technique for Through-Flow Calculations

4.4.1 The Nature of the Computational Problem

To solve numerically the continuum equations developed above, it is first necessary to
convert them into a set of simultaneous algebraic difference equations. The first part of
this section describes the method employed to achieve this, and discusses its limitations.
The second aspect to the numerical solution is the choice of procedure employed to
satisfy the algebraic equations. A relatively simple, explicit successive relaxation method
was chosen, updating each variable in turn, and then returning to the first.
Towards the end of the section the mechanism utilised to obtain the more intuitive

pressure and velocity from the vorticity and streamfunction distributions is related.

4.4.2 Discretisation

A composite finite volume/finite difference method was used for the discretisation of the
equations. The analysis follows the “Tank and Tube” approach documented in a number
of publications (Gosman [50]), and will only be outlined here.

The general form of the differential equations, equation (4.7) is to be integrated over

the control volume® shown in tigure 4.1. We need to evaluate the relationship

3The diagram shows an area, representing a view of a cross section taken through and parallel to the
axis of symmetry. The analysis will be presented for a body of revolution produced by rotating the area
shown through one radian about the axis of symmetry.
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Figure 4.1: The finite control volume in cylindrical co-ordinates.
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(4.21)

If A is constant, then one integration may be performed directly on all terms except

the last. Examination of the equations shows that A is unity for all variables except the

vorticity w/r, where it is r?. For the vorticity, and any similar case, A will be replaced

by a constant ‘average’ value, to be denoted Ap. The square of the value of the radius at

the centre of the cell, r% will be employed here. This difficulty resolved, performing the
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integration gives

o[l ) ) o[ )
o (£52) - (452 )

(4.22)

Convective Terms

Each of the convective terms in equation (4.22) has a similar form. Only one will be con-

sidered here,

1= Ap / e (g—"f) dr, (4.23)

the extension to other terms being straightforward. An average for the value of ¢. over

the range of integration can be defined

fo= (4.24)

—

gl

~—
QL
=

€

If ¢y and ¢ are well behaved, and can be approximated as linear over the range of integ-

ration, then an approximate expression for the integral could be formulated

I = AP&S ( ne 'Il)se) (425)

with the subscripts ne and se referring to values at the appropriate corners of the domain.

To proceed, two further assumptions will be made. Firstly, the value of ¢ inside the
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control volume is uniform, and adopts the value associated with the continuum solution
atnode P; in other words the value of ¢ within the control volume is that at its centre ¢p.
Secondly that é. takes on the value of ¢ associated with the fluid upstream of the e-face
of the control volume. This is equivalent to upwind finite differencing, and thence the

integral becomes

I = AP [¢E{(¢ne - 1/)56) _2 | 1/)'&6 - ¢se |} + ¢P { (I/JTL@ - 1/)55) —; | 1/)'&6 - ¢se |}] . (426)

The final assumption in the discretisation will be that ¢,. and ¢, can be approximated

as the average of the > values at the surrounding nodes, that is

:¢SE+1/)E‘|‘@/)P‘|‘¢S.

, 4.27
b - (427)
Diffusive Terms
The diffusive terms in equation (4.22) all take the form of
1= 7[31“] 9 (Co)| dr. (4.28)
“l0z .

Ts

For this integration, assume that locally to the cell, B, and C'¢ vary linearly with z. Thus

approximate relations may be written

r, = TE ; e (4.29)
B, = w, (4.30)
9(C¢)| _ Crép—Crop (4.31)
0z zg —zp '
The integral may be approximated as
I:BE‘|‘BP><TE‘|‘TP><OE¢E_CP¢P N TS (432)

2 2 Zp — Zp 2 ’
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and similarly for the other terms.

Source Term

Consider the source term in the partially integrated equation (4.22)

Source = //TD dz dr. (4.33)
To perform this integration, it will be assumed that D is constant over the whole of the
control volume. The integral is then equivalent to the value of D, multiplied by the volume

of the control volume, i.e.

Source ~ D.Vol, (4.34)

where for an angle of one radian around the axis of symmetry

Vol ~ rp (ZE — ZW) <TN — TS) . (4.35)
2 2
If, as if often the case, D takes the form of a differential expression, it can be discretised

using central differences.

Special formulation near the centre-line

Particular care must be taken with the discretisation procedure near the axis of sym-
metry, where r is small. For those C'¢ that are dependent on negative powers of r, seri-
ous numerical problems can occur. A case in point is the solution of the swirl equation,
which has €' = 1/r? and ¢ = vr, giving C'¢ = v/r.

In general, it is required to impose a symmetry boundary condition at the centre-line.
The easiest approach for the swirl equation is to formulate the boundary condition in
terms of C'¢ = v/r which being the angular velocity tends to a finite value at the axis.
The discretisation at the next node out radially is adapted to use this value directly. Thus,

for nodes adjacent to the centreline, a special discretisation is employed for the southerly
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diffusive term,

Bral (im)] dz. (4.36)

The differential is written

J (TLQT“U) _ é (TIU>P - (%) centreline’ (437)
ar TP

with the (E) term carried all the way though into the final expression for (rv) .

centreline

Final stage

When the discretisation of all the terms is complete, the integral expressions in the gov-
erning equation are replaced by their algebraic equivalents. The result is re-arranged to
make the value of ¢ at the central node, ¢p, the subject of the expression, giving the gen-
eral form

¢p = Cpop + Cwow + Cnén + Cséds + D. (4.38)

Such an equation exists for the value of each of the variables ¢ at each node within the

domain.

4.4.3 Gauss-Siedel Iteration

A straightforward Gauss-Siedel relaxation technique was employed to solve the simul-
taneous algebraic equations (4.38) for each dependent variable ¢. Details of the order of

the solution are given in section 4.5.
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4.4.4 Velocity Calculations

Axial and radial velocities were calculated directly from the streamfunction and stream-

function values using finite difference approximations to

10
10

4.4.5 Pressure Calculations

Pressure values were estimated by simple line integration of the velocity and density
tields. The integral was first performed along the centre-line of the domain, starting from
a point of known pressure. The radial variation of the pressure field was estimated by

integrating outwards from the centre-line.

4.5 Code Implementation

4,51 Outline

A flow diagram illustrating the overall solution procedure is shown in figure 4.2. After
initialisation of the variables with their starting values, the boundary conditions for the
problem are established. The calculation begins with a sweep updating the vorticity
solution, followed by the streamfunction, and then the swirl velocity. Next the velocity
tield is estimated for use in the following calculations. Using this information, the tem-
perature field is calculated. With a turbulent computation, the turbulence model is then
called to estimate the new turbulent viscosity. If required the pressure can calculated by
direct integration of the velocity fields. For a compressible flow, this stage is essential
to allow the density field to be updated, but for an incompressible fluid it is more effi-
cient to delay all pressure calculations until the vorticity and streamfunction have both

converged.
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Figure 4.2: Flow diagram for the vorticity-streamfunction code.
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4.5.2 Stability

The stability characteristics of explicit vorticity-streamfunction based numerical meth-
ods mean that care has to be taken with the solution. In cases with substantial swirl, gen-
erally a swirl number in excess of unity, heavy under-relaxation was required to prevent
divergence with a consequent increase in the solution time. Use of a red-black ordering

technique ( Press et al. [124]) provided a modest increase in the speed of convergence.

Adaptive Relaxation Parameter Technique

The stability of the solution process was slightly improved by the adoption of a simple
procedure that attempted to adjust the degree of relaxation applied to the variables, de-

pending on the recent history of the computations.

Relaxation on all the variables solved was implemented as
o = (1= RBy) ¢ + Ry (441)

where R|¢ is the relaxation coefficient, 4*+! is the value of the variable after the (k4 1)th
sweep of the grid, ¢/l is the old value of the variable and ¢ is the value produced by
the Gauss-Siedel solver. With the adaptive technique, the size of R4 was calculated as
a function of the residual from the previous two sweeps according to the following al-
gorithm. If the residual had decreased at the last sweep, the relaxation coefficient was
multiplied by a small factor, typically 1.002. If the residual had increased, the relaxation
factor was divided by factor larger than that used for multiplication, typically 1.01. Re-
laxation factors were calculated independently for each variable.

Generally the adaptive technique in general did little to speed up the overall time to
convergence required by the code. Although no quantitative tests were carried out, in
most cases the time penalty imposed by evaluating a new relaxation coefficient after each
sweep of the grid more than offsets the savings provided by the efforts of the routine to

keep the coefficient as high as possible.
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The greatest advantage of the technique was in cases that proved to have poor sta-
bility properties, and in particular computations with large swirl. These computations
appeared to be only marginally stable at first, but after a number of iterations would
‘settle down’, and begin to converge well. The adaptive technique allowed the use of
very small relaxation coefficients in the early stages of such calculations, but would in-
crease the coefficients as the values started to converge. This gave three advantages, by
promoting stability in the early stages of computation, reducing unnecessary delays due
to over cautious relaxation in the later stages, and reducing the need for experimentation
to find suitable coefficients for each case.

No attempt was made to optimise the adaptive technique, and considerable improve-
ments could be made. The routine, as described above, errs on the side of caution. It is
particularly prone to sudden, isolated increases in residuals that have previously shown

good convergence characteristics, and then continue to do so.

4.5.3 Convergence Criterion

The convergence of solutions given by the code was determined by means of the value

of the residual evaluated according to the criterion

maz (¢[k+1] _ ¢[k])

maz ($F+11)

<e (4.42)

In general ¢ was taken as 5x 1072, Any other values are given in the text.

4.6 Verification of the Through-Flow Code

4.6.1 Overview

In order to verify the correct functioning of the code a number of benchmark calculations

were performed. This section reviews the results of some of the test calculations, with
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the objective of assuring the reader as to the validity of the vortex tube simulations that

follow. More details concerning the computations can be found in appendix C.

4.6.2 Driven Cavity Laminar Benchmark

To test the basic function of the vorticity-streamfunction solver, the flow pattern in a
driven cavity was calculated. The code was operated in its Cartesian mode under lam-
inar conditions.

The driven cavity problem is a commonly used benchmark, and there are many solu-

tions available in the literature. A typical domain is shown in figure 4.3. Results pro-

Moving Wall

A

Fluid

Sketched Streamlines Cavity

Figure 4.3: Outline of the driven cavity problem.

duced by the solver stood comparison with the computations of Gosman [50].
Verification of grid independence was achieved by calculating the same problem with

grids ranging from 21x21 to 91x91 nodes. Comparison of the solutions showed a reason-

able correspondence. The differences that were visible could be attributed to the change

in numerical viscosity resulting from the different grid spacings.

4.6.3 Rotating Pipe-Flow Laminar Benchmark

Assessment of the vorticity-streamfunction formulation in cylindrical co-ordinates, and

of solutions of the swirl equation was accomplished by computing the laminar axisym-
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Figure 4.4: The computational domain used to verify the performance of the vorticity-
streamfunction solver in cylindrical co-ordinates with swirl.

metric flow field in a pipe, the upstream portion of which rotates, while the downstream
portion is stationary as shown by figure 4.4. Such a problem was investigated in detail by
Silvester et al. [2] who suggests that the size of the recirculation region arising from the
step change in the angular velocity of the pipe provides a good measure of the validity
of any solution. The vorticity-streamfunction solver gave results that had a fair quantit-
ative similarity to those of Silvester, and a good qualitative similarity.

Recirculating flow fields provide a good test of the conservation characteristics of any
code. Evaluating the calculated axial mass flow rate along the length of the pipe showed
very good mass conservation characteristics over most of the field. The highest errors
could be found in the regions of highest recirculation. At no point did the error exceed

two percent of the overall flow rate, even on the coarsest 31x31 grid.

4.6.4 Turbulent Pipe-Flow Benchmark

To test the two-equation k— e solver, a number of solutions for the turbulent non-swirling
axisymmetric flow in a pipe were calculated and compared to analytic results by Nikur-
adse (see Schlicting [125]). The velocity profiles at all points in the solution showed an

excellent correspondence with the benchmark.
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4.6.5 Verification of the Energy Equation

No attempt has been made to quantitatively verify the temperature field solutions provided
by the energy equation. All the solutions obtained with the code have been physically
plausible.

4.7 Vortex Tube Computations

4,71 Overview

The vorticity-streamfunction code was used to calculate a number of Ranque-Hilsch tube
flows. This section begins by outlining the boundary conditions employed in the com-
putations, and then presents some of the results obtained with a discussion of their sig-

nificance.

4.7.2 Boundary Conditions
Geometrical Constraints, and the Streamfunction

A number of geometrical arrangements were investigated to obtain a flow comparable
to that found in the vortex tube. The most successful designs for the uniflow and coun-
terflow tubes are shown in figures 4.5 and 4.6 respectively. As noted earlier, the difficult
to model inlet nozzles have been replaced with an annular slit, through which a swirling

flow is introduced at a mass flow rate comparable to that in real tubes.

In the vorticity-streamfunction formulation, solid boundaries are inserted by forcing
the streamfunction to adopt a constant, pre-specified value along the desired line. With
counterflow simulations, this has the side effect that the cold mass flow fraction x. must

be chosen a priori.
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Figure 4.5: The geometry employed for uniflow calculations.
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Figure 4.6: The geometry employed for counterflow calculations.
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Velocity and Vorticity

No-slip conditions are imposed at all solid boundaries. For the swirl velocity, this con-
dition is easily implemented by setting the swirl velocity on the walls to zero. With the
axial and radial velocities however, it is more complicated as the conditions have to be

formulated in terms of the vorticity and the streamfunction.

A first-order boundary condition will be derived for the general case of a variable
density flow, adjacent to a solid wall extending in the z-direction and moving with a ve-
locity w,,q; parallel to the axis of the tube. The vorticity at the wall w,, will be calculated
in terms of the streamfunction at the wall +,, and the streamfunction at a point adjacent
to the wall ¢,. Typically this is the condition applied at the circumferential wall of the
vortex tube. Derivation of an expression for the vorticity at a wall extending in the radial

direction is analogous.

Differentiating the relationship between the streamfunction and the axial velocity,

w = i@_lb’ (4.43)
pr Or
gives adjacent to the wall
Jw 1 0% 1 1 opl\ o
(a)w - {p—a— - (— * EE?) o). @4
At the wall, the normal velocity u,, = 0, and so the vorticity equation becomes
Jw
Wy = — (E)w, (44:5)

as given by the negation of expression (4.44). Applying expression (4.43) at the wall,
gives

(gi) = (prw),, (4.46)

where w,, = wyq from the no-slip condition. Expanding ) in a Taylor series about its
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value at the wall shows also

PPN 20— ) 2(prw),
(W)w = - . (4.47)

(Tp - Tw)Q 'p = Tw

Combining these results, the first-order expression for the vorticity on the circumferen-

tial wall is

w

_ 2 —m) (E%JFLJFM) (4.48)

B (pr),, (rp — rw)2 por Ty T, —Ty
Where necessary, the density gradient term can be evaluated as a one-sided difference
at the wall, but in most cases it can be ignored. Where the wall velocity is zero, the term

vanishes. In other cases the density gradient close to the wall is likely to be small.

Thermal Conditions

The external walls of the tube were assumed to adopt at the temperature of the inlet gas.

Centre-Line

The centre-line of the tube represents a symmetry axis. Zero gradient Neumman bound-

ary conditions are imposed on all variables here.

Outlet conditions

It is assumed that the flow is fully developed where it leaves the tube. Zero gradient
or constant gradient Neumman boundary conditions are imposed on all variables. In
general a zero gradient condition was preferable, as the extra ‘freedom’” permitted by
constant gradient conditions could lead to instability. Care has to be taken that the length
of the domain is sufficient to ensure that there is no recirculation near the outlet.

The particular choice of boundary condition at the outlet of the uniflow geometry
had very little effect on the upstream flow. A similar observation was made regarding

the boundary conditions for the warm outlet of the counterflow tube.
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Conditions imposed at the cold outlet of the counterflow tube were found to be more
important, the constant gradient condition appearing to be preferable. The assumption

that the flow is fully developed on leaving the tube is poor here.

Turbulence Conditions

The specification of boundary conditions for the turbulence quantities £ and ¢ in a strongly
rotating flow is problematic. It is well known that the standard & — ¢ equations are in-
accurate close to a solid wall, even under "straightforward” non-swirling flow. Two ap-
proaches are commonly employed to overcome this difficulty. Perhaps the most satis-
factory is that adopted by Elkaim [52], who uses a mildly reformulated low Reynolds
number turbulence model close to the wall. An alternative is to abandon the turbulence
model altogether at a node close to the wall, and use a "law of the wall” expression to

estimate turbulent effects there, as performed by Armfield et al. [48].

Close to the wall the mixing length of the turbulence can be evaluated using
Pt
I = kr” (1 - e—7> (4.49)

+ _ r*N/Tw /P

wherer* =r,—r,rt = — and A is the Van Driest damping constant, usually taken

as 26. The wall shear stress is evaluated as

Tw = \/Ti. + Tup- (4.50)

The turbulent viscosity at a point close to the wall can be evaluated from

5 | (Ou : ow  w\’ :
e = pl {(E) + (5—7) } (4.51)
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and the turbulent kinetic energy and dissipation rate from

1/2
k= — (4.52)
12C;
and ,
Zk%
€= Ci (4.53)

Equation (4.49) is only valid in the approximate range 30 < »* < 100. To ensure that
the boundary values are evaluated at a point in this range, the routine searches inwards
from the cylindrical wall for the first node which lies within the specified range. Val-
ues of k£ and ¢ are evaluated there using the procedure above, and the node becomes
the boundary node for the subsequent solutions of the £ and ¢ equations. Any points
between the determined boundary node and the cylindrical wall are assumed to lie within

the laminar sublayer of the boundary layer.

The calculations presented were performed either with a law of the wall condition,
or without any special treatment, by solving the standard k£ — ¢ equations right up to the
wall where £ = 0 and ¢ = 0. Qualitative differences between the two flows were not

great.

4,7.3 Inlet Conditions

Vorticity and Streamfunction

The inlet flow through the annular slit was assumed to enter the tube with a uniform ra-
dial velocity, and no axial velocity. Conditions consistent with this require zero vorticity,
and a streamfunction that varies linearly with the axial co-ordinate across the length of
the slit, calculated by integrating relation (4.3) assuming a constant known inlet density

and radial inlet velocity.
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Swirl Velocity

The inlet flow was assumed to have uniform swirl velocity, right up to edges of the inlet

‘slot’.

Turbulence

It was assumed that the turbulent kinetic energy of the inlet flow was a certain percent-
age of the overall kinetic energy. The expression used to provide a reasonable value for

the inlet turbulence was

k=a(a+v?), (4.54)

evaluated using the velocity of the inlet flow. The value of a was taken as 0.03, following
the practice of Elkaim et al. [52]. Numerical values for the dissipation in the inlet flow

were calculated from .

k3
= — 4.
¢ OdbD’ (4.55)

where (; is the same quantity as employed in the turbulence model, D is the diameter

of the tube, and the constant b is 0.005. Again this value was taken from Elkaim [52].

4,74 Grid Considerations

The majority of the computations were performed on a grid of 43x43 nodes, as this was
found to provide a good compromise between precision and computational effort. Nodes
were concentrated radially near to the cylindrical wall of the tube in order to resolve the

steep gradients found there, and near to the inlet. Figure 4.7 shows a typical grid.
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Figure 4.7: The computational grid.

4.8 Results for Uniflow Tubes

Control Experiment

As a ‘control” experiment, the flow field in a uniflow tube without any swirl was estim-

ated. Tube dimensions were set to be the same as those for the 26 mm diameter CUED

tube investigated in chapter 3, and the working fluid was assumed to be air. The out-

come is shown in figure 4.8. The flow pattern is much as expected, and produces no

significant evidence of energy separation.

Results

Figure 4.9 shows the result of a calculation for the uniflow tube with an inlet swirl number?

of 10.4. The flow pattern in a real vortex tube is captured quite well, with an approxim-

ately forced vortex formed at the inlet, which decays substantially by the outlet. There

is evidence of a small region of recirculation near to the axis, just along from the inlet.

This particular calculation assumed a turbulent Prandtl number of one. While there

is some evidence of an energy (stagnation temperature) separation just along from the

inlets, it is not great, and decays quickly. Atz = 0.083 m a stagnation temperature differ-

“ At the inlet nodes the radial velocity was 4 m/s and the swirl velocity was approximately 300 m/s.
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122: Streamfunction

0.012

0.01

0.008

+= 0.006

0.004

0.002 =

z/lm

Figure 4.8: Uniflow tube flow calculation, with no swirl. The top diagram shows
the streamline pattern, the middle diagram shows the axial velocity variation and the
bottom diagram gives the temperature distribution. The radial inlet was positioned
between nodes 3 and 8.
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ence of more than 10 K between inner and outer regions of the flow is visible, but near
the exit = = 1.16 m, it has disappeared.

Reducing the Prandtl number to 0.2 (see figure 4.10), thereby increasing the turbu-
lent thermal diffusivity, produces some increase in the energy separation. Increasing the

Prandtl number to 5 reduces the separation.

The Richardson Number Correction

Figure 4.11 compares two swirl velocity profiles some distance along a uniflow tube,
computed under the same conditions as the preceding results, but one with the Richard-
son number correction to the turbulence model disabled. The result without the correc-
tion shows a quicker decay of the swirl as was expected from the discussion in section

4.3.3, thanks to the increased turbulent viscosity it predicts.

4.9 Results for Counterflow Tubes

Results for the counterflow tubes show similar overall features to the uniflow calcula-
tions. As can be seen from figure 4.12 the recirculating region near the cold flow outlet
orifice is caught quite well, although it appears to be shorter than might have been anti-

cipated.

4,10 Discussion

The computations give results for the fluid mechanics that qualitatively compare very
well with the experiments of chapter 3 and the literature. The swirl profiles confirm the
existence of an approximately forced vortex in the inlet regions. Also notable is the decay
through turbulent and viscous dissipation into a Rankine vortex further down the tube.
Axial velocity variations are predicted well too, with recirculation close to the centre-line

near to the inlets, and in general a much faster flow towards the periphery throughout
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Figure 4.9: Uniflow tube calculation with an inlet swirl number of 10.4, and unity tur-
bulent Prandtl number. The upper diagram shows the streamline pattern, the middle
diagram shows the swirl distribution, and the lower diagram gives stagnation temper-
ature distributions across radii at the axial positions noted by each curve. The radial inlet
was positioned between nodes 2 and 6.
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Figure 4.10: Uniflow tube calculation with an inlet swirl number of 10.4, and a turbulent
Prandtl number of 0.2. The upper diagram gives the static temperature distribution, and

the lower gives the stagnation temperature distributions across radii at the axial posi-
tions noted by each curve.
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Figure 4.11: The effect of the Richardson number correction.The upper graph compares
the swirl velocity profiles at the inlet (the circles represent the solution without the
Richardson number correction, the solid line with it). Comparison of swirl velocity pro-
tiles at a normalised axial position of 0.19 (lower diagram) shows the increased decay
without the correction.
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Figure 4.12: Counterflow tube calculation with an inlet swirl number of 10.4, and a cold
fraction of p. = 0.4. The upper diagram shows the flow pattern, the middle diagram
shows the swirl distribution, and the lower diagram gives static temperature distribu-
tions.
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most of the tube.

The energy and temperature separations are not captured well. Indeed, the solutions
predict that the central flow initially becomes warmer than the periphery. Despite this,
some insight into the phenomenon is possible, especially from the effect of the turbulent
Prandtl number on the temperature field. A low turbulent Prandtl number represents
a high thermal diffusivity in comparison to the momentum diffusivity. This appears to
encourage the formation of an energy separation. A high Prandtl number by comparison
seems to reduce the potential for the formation of an energy separation.

In the two uniflow cases presented, the flow patterns and hence the kinetic energy
distributions are essentially identical. The temperature fields differ however, with the
low Prandtl number (high thermal diffusivity) result exhibiting a cooler central flow than
that with unity Prandtl number. The increased energy separation in the low Prandtl
number case appears to be due to the fact that the increased thermal diffusivity encour-
ages thermal conduction, producing a more uniform radial temperature distribution. In
other words the difference in the radial energy separation between the two cases appears
to be due almost entirely to the differences in the radial temperature distribution, which
in turn is caused by the differing turbulent conductivities.

Formation of a forced vortex in the simulated vortex tube is subtly different to that in
a real tube. With the simulated tube, the inlet flow already has a substantial kinetic en-
ergy. The production of the forced vortex then involves a slowing of the gas that moves
towards the central regions, tending to convert kinetic energy to heat®, while the gas at
the periphery carries on swirling at close to the inlet velocity and temperature . Thus
the central flow would tend to become warmer. In a real vortex tube, the gas in the inlet
nozzles could be thought of as stationary until it enters the tube. Formation of a forced
vortex then involves acceleration of the peripheral gas, tending to cool it, while the cent-
ral gas remains near to the inlet temperature.

The net effect of the two processes is similar. In the absence of energy transfer through

®This discussion employs a simple adiabatic energy equation, h, = h + v*/2.
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the fluid, they both tend to produce a cool gas at the periphery, and a warmer one near
the centre. For the simulated vortex tube, this influence can be seen clearly, and sub-
sequent radial conduction produces an energy separation. The better the conduction,
the better the maximum separation. With a real vortex tube however, the influence can-
not be seen directly. At no point is there evidence of the central gas being warmer than
the periphery. We must tentatively conclude that the radial energy transfer mechanisms
in the real tube are so good as to transfer thermal energy from the centre to the periphery
before there is any detectable temperature gradient.

It seems that thermal conduction processes are important in the formation of any ra-
dial energy separation in the vortex tube. Production of a substantial separation requires
a much greater radial transport of thermal energy than that predicted by the vorticity
streamfunction code. For a real tube, in view of the experimental evidence for an energy
separation that develops as the gas moves axially, it seems likely that the transport may
be against the temperature gradient. The next chapter investigates mechanisms through

which this transport could occur.

4.11 Closing Remarks

A relatively simple computational fluid dynamics technique has been employed to solve
the flow in a Ranque-Hilsch vortex tube. The considerable assumptions made during
the development of the code limit its utility, but it is able to produce solutions for the
flow that are at least qualitatively similar to those found in practice. Less success was
achieved in simulating the energy separation effect, although some insight into the Ranque-

Hilsch phenomenon was obtained.



Chapter 5

Mechanisms of Energy Transfer

5.1 Introduction

Having completed our detailed examinations of the vortex tube, we will attempt to draw
some conclusions regarding the energy transfer processes at work within the device. The
study will begin by considering the information collected in the preceding chapters, and
comparing the importance of various factors. Analysis of the axisymmetric energy equa-
tion assists in the interpretation of the data, and reveals some of the physical processes

that might underlie the energy transfer.

5.2 Review

5.2.1 The Ranque-Hilsch Phenomenon

Two aspects to the Ranque-Hilsch phenomenon can be distinguished. Firstly there is a
radial energy separation in the form of a stagnation temperature that increases from the
centre of the tube to the periphery. Secondly, there is a static temperature separation with
the peripheral gas warmer than the central gas.

Of the two manifestations, the stagnation temperature separation is the more interest-

ing. To some extent the static temperature gradient results from the ‘dissipation” of the

135
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velocity component of the stagnation temperature variation. As an example, the vari-
ation of the temperature of the cylindrical wall of the tube with axial distance from the
orifice can probably be attributed in a large part to the frictional dissipation of the swirl
velocity in the outer regions of the gas.

While the axial development of the radial static temperature profile can be explained
in terms of a pre-existing stagnation temperature separation, there are still many mat-
ters to be addressed. The over-riding question is how the stagnation energy separation
occurs in the first place. There are other features to be accounted for though, in partic-
ular the apparent increase in stagnation temperature separation in regions of high swirl
which requires energy transfer against the temperature gradient, and how a radial static
temperature separation is maintained along a significant length of the tube, despite the
effects of turbulent conduction which would be expected to produce a uniform distribu-

tion.

5.2.2 The Evidence

On the basis of the previous chapters, flow in the vortex tube could be characterised as
follows. The tangential injection of compressed gas produces a turbulent, fast rotating
flow in the inlet region that is comparable to a forced vortex. The vortex decays along
the length of the tube, such that the swirl velocity at the end far from the injectors, near
the valve, is very much slower than at the inlet.

As the gas progresses along the axis of the tube and away from the entry region, there
do not appear to be any dramatic changes in the flow pattern. Gas that moves to the
centre when it enters the tube remains at the centre, and similarly gas that is initially
at the periphery does not move substantially inwards. The only exception to this is for
a counterflow tube, where some of the gas near the centre-line undergoes a sudden re-
versal of direction, reminiscent of a bubble breakdown, and flows back towards the inlet
region to leave through the orifice. In all cases though, the gas that leaves through the

central ‘cold” exit is gas that has been nearer the centre throughout its passage in the tube
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whereas gas leaving through the outer ‘warm’ exit is taken from the periphery.

Energy transfer from the inner gas to the outer gas occurs in the regions of high swirl
near the inlet nozzles, producing the thermal separation associated with the vortex tube.
Acoustic streaming does not appear to play a significant role in the energy transfer.

Undoubtedly the most important feature of the flow is the approximately forced vor-
texin the inlet region. This vortex essentially ‘drives’” the whole vortex tube, establishing
the pressure gradients that are responsible for the axial and radial flow patterns. It some-
how provides the mechanism by which the potential energy of the compressed inlet gas
is converted into an energy separation.

The very formation of a forced vortex at the inlet plane can itself account for some of
the energy separation. Firstly, the peripheral gas has a much larger kinetic energy than
the central gas. Secondly, were the inlet flow adiabatic, the static temperature would
decline with increasing radius as a greater portion of the reservoir enthalpy is taken up
by the swirl velocity. This would tend to promote a radially outwards conduction of heat
as the gas passed down the vortex tube, re-enforcing the energy separation.

Attributing any part of the Ranque-Hilsch effect directly to the formation of a forced
vortex in the inlet region could be considered merely a reformulation of the original ques-
tion concerning the origin of the energy separation, to one addressing the mechanism by
which the forced vortex itself is formed. The flow in the inlet region is very difficult to
analyse, making it hard to draw conclusions regarding the formation of the forced vor-
tex. It was seen in chapter 2 that a body of fluid subjected to an external torque will form
a forced vortex. A comparable situation appears to exist at the vortex tube inlet, with the
tangentially injected gas exerting an external torque on the gas already within the tube.

Given that there is axial development of the energy separation, the forced vortex it-
self cannot be wholly responsible for the Ranque-Hilsch effect. As the flow progresses
along the vortex tube, there must be additional energy transfer from the central gas to
the peripheral gas. Furthermore, it is necessary to consider how the energy separation
‘survives’ the regions of relatively low swirl near to the tube exit in a uniflow tube, pro-

ducing hot and cold streams.
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5.3 The Energy Equation

It is useful to return now to the energy equation (2.12) and elaborate on the significance
of some of the modes of energy transfer that its terms represent. Assuming axisymmetry

the equation may be written

10 aT a (. .0T oh oh JpP JP

with the dissipation function
52 @2(3)2 dw\®  L(ov_ v\ 1(ov)" 1(ou ow)’
— M\ or + r + 0z +2 or +2 0z 2\0z Or

Attention will be confined to the ‘main body’ of the vortex tube, that is away from the

— %(VV)Q} )
(5.2)

inlet region. Analysis will begin by accounting for the effects of turbulence, and consid-

ering the sizes of some of the terms.

The energy equation may be Reynolds averaged in the conventional manner by split-
ting each variable into a constant and a fluctuating component. It is quite reasonable to
neglect the influence of molecular heat conduction in this context, which will be over-
whelmed by the effects of the turbulence. Following Hinze [85] in his analysis of the vor-
tex tube, fluctuations in the density and the pressure will be considered negligible. This
is mostly a matter of expediency, although there is some physical justification. All ana-
lysis so far has suggested that the density of the gas within the vortex tube does not vary
greatly in comparison to the temperature and velocity fields so it might be anticipated
that density fluctuations would not have a dominating effect on the energy fluxes within
the tube. The pressure fluctuations are likely to be substantial, but it will be shown later
that the terms containing pressure gradients are small compared to some of the others,

and again, the pressure fluctuations are not likely to be dominant.
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Proceeding with the Reynolds averaging, one obtains,

oP
0z

. ar 9T O R P
Pyl + el =~ (pcpT w) ~ 5 (pcpT u) + O + w

+®+ 0 (5.3)

where ® represents the mean dissipation and @’ represents the time averaged fluctuat-
ing dissipation terms. The resulting terms will be considered in more detail, although
analysis will necessarily be limited by our poor knowledge of the nature of the fluctu-
ations within the tube. For most of the remainder of this chapter, the bars over averaged
values of single variables will be dropped. Terms without dashes or over bars should be

assumed to be steady components.

5.3.1 Terms in the Energy Equation

The flow in the vortex tube is highly turbulent. This has been indicated by the large swirl
Reynolds number of the flow, the results of the experimental work, the numerical exper-
iments and the work of others. We start to consider the influence that the turbulent fluc-
tuations have have on the energy transfer within the vortex tube by looking further at

groups of terms in the energy equation.

Dissipation

It will be assumed that the turbulent dissipation function can be accommodated through

an eddy viscosity model, that is

(®+ ') = pe- 0. (5.4)

The nature and magnitude of the eddy viscosity will be considered later.

Some of the terms in the dissipation function are likely to be small compared to oth-
ers, and therefore can be ignored. Evidence so far has suggested that radial velocities
within the body of the tube are small. While the validity of this conclusion is assessed

below, it is probably reasonable already to suggest that the radial velocity does not make
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a significant contribution to the dissipation. Furthermore, it has also been observed that
velocity gradients in the radial direction are much larger than those in the axial direction.
In this light the latter may be ignored. As the mean density variations within the flow are
also quite small, the divergence term is not likely to have a great influence either, leaving

as an approximation for the dissipation function

@—I—@’zpe{(%—;) —I—(aa—;v)} (5.5)

Mean Convection

The mean convection terms are likely to be fairly small, compared to the dissipation func-
tion. While radial temperature gradients are substantial, the small radial velocities will
limit its magnitude.

It might be anticipated that the mean convection in the axial direction would also
be small. Two factors make conclusions difficult to draw regarding this term though.
Firstly, the axial velocity is not negligible. Secondly, it is the only term allowing any axial

development of the temperature field, which we have seen to be significant.

Turbulent Convection

While turbulent convection axially is likely to be overwhelmed by the mean convection,
the same cannot be said for the radial direction. Hinze [85] shows that the radial tur-
bulent convection term in a turbulent strongly swirling compressible flow should be re-
placed by the expression

10 9T 4 —1T 9P

where ¢, is the eddy diffusivity for the transport of heat. The mathematical proof is in-
volved; however the same expression can be conveniently derived by employing a mix-

ing length model (see for example Deissler and Perlmutter [7]). The main points of the
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Figure 5.1: The motion of a fluid particle caught in an eddy, through the radial temper-
ature and pressure gradients. Station A represents a position towards the periphery of
the vortex tube, and station B towards the centre.

analysis will be presented.

Consider an eddy moving radially from an inner station B to an outer station A, as
shown in figure 5.1. Assume the eddy moves isentropically’, without exchanging heat
with the intermediate fluid. When the fluid particle arrives at station A, it displaces an
mass of fluid equal to itself. If the displaced fluid was in thermal equilibrium with the
surrounds, it would have a temperature 7,. Thus, if the arriving particle has temperature
T! the net heat transported to station A by the eddy is (mass of eddy) x ¢, (1, — T,). The

heat flux from station B to station A is therefore

g=cp-p- [ (T;—Tu) (5.7)

!This is a large assumption, and is unlikely to be completely true. However it is no more arbitrary than
the conventional assumptions of mixing length models, and may be justified on the basis that the scale
of the motions is small, and the fluctuations are rapid. Deissler and Perlmuter [7] mention that certain
meteorological experiments support the assumption, but fail to provide any details. There is at least some
evidence that the motion of the fluid eddies could be considered as adiabatic, again from work by Deissler
[126].
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where f represents the volume of eddies per second passing from station B to station A,

and it is assumed that the density of the fluid particle does not change significantly.

Let ! be the radial distance between the two stations, AT the difference in the average

fluid temperature and A7, the change in the eddy temperature, in which case

AT; AT,

Qt:_cp'p'f'l'< ; ;

Assuming that [ is small, this may be written

— e -2
e et (dr dr

For the isentropic eddy motion
E
T. = constant x P~

and thence
dl. 1 dP y—1TdP

dr _pcpﬁ_ vy Pdr’

The turbulent heat flux becomes

or

ar dTe)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

replacing [ f by the eddy diffusivity ¢,. The radial turbulent convection term can be ap-

proximated by this expression, that is

dge

or’

g7 () =

(5.14)

It is worth noting, as did Schultz-Grunow [127], that if we imagine the same fluid
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particle continually being sent back and forth between stations A and B, then it is sub-
jected to a cyclic thermodynamic process. The particle acquires heat at low pressure,
and delivers heat at high pressure, in a process analogous to conventional refrigeration

cycles.

5.4 Application to Data

The assumptions and simplifications of the preceding section require stronger founda-
tions. To this end, they will be tested against experimental evidence. The terms remain-
ing in the energy equation will then be compared to each other, with the objective of pro-
ducing a minimalistic representation of the energy transfer processes likely to be at work

in the vortex tube.

5.4.1 Magnitude of Radial Velocity — Departures from Simple Radial
Equilibrium

It is convenient to assume that the radial velocities within the vortex tube are small com-
pared to those in the axial and tangential directions. This assumption has been already
been employed in some of the analysis so far?. If the radial velocities are indeed negli-

gible, then the radial momentum equation reduces to expression (2.19), that is

2
or _ (5.15)
or r
Thus examining the value of % — "’TLQ for the experimental data should provide an indic-
ation of the validity of simple radial equilibrium in the vortex tube.

Figure 5.2 shows the value of the test parameter as a function of radius at three sta-

tions in the 26 mm diameter vortex tube. The calculations were performed numerically

2See also appendix E for a further discussion of the validity of simple radial equilibrium within the
vortex tube.
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Figure 5.2: The magnitude of the departure from simple radial equilibrium at stations in
the 26 mm diameter vortex tube.

using the data presented in chapter 3. Conformance to simple radial equilibrium is quite
good at the two downstream stations, z = 0.2 m and z = 0.6 m, but relatively poor near
to the inlet region at = 0.05 m. The departure from equilibrium near the inlet region is
probably due to the disturbance caused by the intrusive probes used for measurements,
especially since the disturbances will be most significant in the fast flows found in such
areas.

The magnitude of the radial velocity at the first station in the 26 mm tube was calcu-

lated from the radial momentum equation by

du pv* dP
ut = 5.16
P r dr ( )
and integrating such that
F(v* 1dP
u? = 2/ (”— . ——) dr. (5.17)
ro pdr

The result of a numerical calculation is given by figure 5.3. Velocity values are plotted
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Figure 5.3: The magnitude of the radial velocity relative to that at a radius of 0.012 m, at
z = 0.05 m in the 26 mm diameter vortex tube.

relative to the radial velocity at a radius of 12 mm, as reliable values could not be taken
right up to the wall to provide an absolute reference of zero radial velocity. As thisis very
close to the wall, however, the values shown are representative of the absolute radial
velocity. The estimated radial velocity is relatively small compared to the swirl and axial
velocities beyond a radius of approximately 5 mm. In the centre of the tube it is more

significant, and simple radial equilibrium will not be a good approximation there.

5.4.2 Terms in the Dissipation Function

To investigate the assumptions outlined regarding the dissipation function, values of
(% — %)2, (%—f)Q, (g—f)Q, and (%)2 were estimated from the experimental data for the
26 mm diameter vortex tube, at axial stations in the hot tube. No account was taken of
terms involving the radial velocity, on the basis that they are small and poorly known.
Figure 5.4 shows the calculated values as a function of radius, at a distance of 0.05 m

2
from the inlet nozzles. Only two of the terms investigated were significant, (% - E) ,
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Figure 5.4: Terms in the dissipation function at z = 0.05 m, in the 26 mm diameter vortex

dv v

tube. The solid line represents the contribution of the swirl velocity term (5 — ;) , the

dashed line that of (%—”j) *. Other terms were too small to produce distinguishable lines

on the graph.
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Figure 5.5: Terms in the dissipation function at z = 0.5 m, in the 26 mm diameter vortex
tube. The significance of the lines is as for figure 5.4.
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Figure 5.6: Terms in the dissipation function at z = 0.6 m, in the 26 mm diameter vortex
tube. The significance of the lines is as for figure 5.4.



CHAPTER 5. MECHANISMS OF ENERGY TRANSFER 148

(%—f) 2, the others producing values too small to be distinguished on the graph.
Values calculated much further along the tube, at distances of 500 mm and 600 mm
from the inlets are shown in figures 5.5 and 5.6 respectively. Over the vast majority of
these regions, the swirl, (g—: - %) " term is by far the largest.
The tentative conclusions regarding the dissipation function are confirmed. The dis-
sipation of the swirl velocity is the dominant term over much of the vortex tube, although

near to the inlet nozzles the axial velocity is also important.

5.4.3 The Influence of Turbulent Convection

If the turbulent convection process represented by expression (5.6) is to contribute pos-

itively to the radial energy separation then it is important that
_— — — > 0. (5.18)

Figure 5.7 gives the values of é% — 4L at three stations in the hot tube of the 26 mm
diameter apparatus. The greatest potential for outwards radial transport is found at the
station nearest the inlets, and declines as the gas proceeds along the tube towards the
hot exit. This is not unexpected, since the turbulent convection mechanism is essentially
a non-equilibrium phenomenon, and is dependent on the strong swirling of the flow to
provide a radial pressure gradient. Towards the warm exit of the tube the swirl has sub-
stantially decayed, and additionally the transport mechanisms have had plenty of op-
portunity to bring the temperature and pressure fields into equilibrium.

The variation of the potential for radially outwards thermal transfer perhaps also
helps to explain the axial development of the energy separation. Near the inlets, there is
plenty of potential for outwards energy transfer from the central regions of the flow by
turbulent convection. This would explain the initial re-enforcement of the energy sep-

aration found close to the inlets. Quite quickly though, and in the case of the 26 mm

diameter tube within the first 200 mm of axial distance, this potential is drastically re-
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duced and the outwards energy transfer effectively ceases. Yet the effect of the pressure
gradient is not entirely eliminated, as figure 5.7 shows little evidence of any inwards dir-
ected energy transfer beyond 200 mm either. It would seem reasonable to surmise that
the pressure gradient is still sufficiently large to limit any turbulent transport of energy
down the temperature gradient, even though it no longer actively re-enforces the energy

separation.

1000

800" z=50 mm : )
600 .l
£
>4
£ 400 .
()
[
c
2
S 200 z=200 mm 7
e}
c ——
5] - - -— L
o \\\\‘
O=——— e —= N e — S —
z=900 mm =
_2007 . N N \\,
_400 I I I I I I I I
3 4 5 6 7 8 9 10 11 12

Radius / mm

Figure 5.7: The potential for turbulent heat conduction radially outwards at three sta-
tions in the 26 mm diameter vortex tube. Positive values indicate energy transfer direc-
ted outwards, negative values correspond to inwards turbulent conduction.

5.4.4 Magnitudes of Terms in the Energy Equation

Having simplified the groups of terms in the energy equation, it is useful to compare the
relative significance of the remaining quantities at various points in the flow.

Figures 5.8, 5.9 and 5.10 give values of the quantities representing turbulent radial

: el aT 1 9P
convection, 3 [rpehcp (E  pep o7

v

2
)] , dissipation of the swirl velocity, rpe (% — ;) , axial

convection by the mean flow, rpc,w2l and work done against the pressure gradient by
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the axial flow rw2E, as a function of the radius, estimated from the experimental data in

chapter 3. Terms involving the radial velocity were ignored.

z=0.05

Normalised Magnitude
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4 5 6 7 8 9 10 11 12
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Figure 5.8: Terms in the energy equation at z = 0.05 m. The dashed line, labelled 1, rep-
resents the reduced dissipation function, the dotted line labelled 2 represents the effects
of axial convection, the solid line, 3, represents the effects of radial turbulent heat trans-
port, and the fourth chained line is the axial pressure work term.

One difficulty in evaluating the terms concerns the appropriate values for the turbu-
lent mass and thermal diffusion co-efficients, ¢ and ¢;, although only approximate values
are necessary for the purposes of comparison. It was assumed that the two values were
identical® and approximately equal to 100 times the molecular viscosity divided by the
local density. This value is fairly arbitrary, but is representative of the figure associated
with high speed rotating flows, see for example Keyes [101].

The first figure gives the values for the 26 mm device at an axial station in the hot tube,

50 mm away from the inlet nozzles. It is clear that the axial pressure gradient term, rep-

3This arbitrary assumption is made by many authors. The justification is that the turbulent transport
process is similar in both cases. In other words, the same fluid particles are responsible for the momentum
and the thermal transport.
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Figure 5.9: Terms in the energy equation at z = 0.2 m.The dashed line, labelled 1, repres-
ents the reduced dissipation function, the dotted line labelled 2 represents the effects of
axial convection, the solid line, 3, represents the effects of radial turbulent heat transport,
and the fourth chained line is the axial pressure work term.

resented by the chained line can have very little influence on the resulting temperature
distributions, and can be ignored. The other three terms all have regions where they are

significant, however.

Results at an axial station 200 mm away from the inlet nozzles are given in the second
tigure. It is notable that the radial turbulent conduction term (line 3) is less significant

here than in the last diagram, presumably because the swirl has decayed significantly.

The third diagram gives values of the terms at a station 600 mm away from the inlet
nozzles, well beyond the region in which the energy separation was seen to develop.
Here, the radial turbulent conduction term has declined even more, such that the energy

and temperature distributions are dominated by axial convection and by dissipation.
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Figure 5.10: Terms in the Energy equation at = = 0.6 m.The dashed line, labelled 1, rep-
resents the reduced dissipation function, the dotted line labelled 2 represents the effects
of axial convection, the solid line, 3, represents the effects of radial turbulent heat trans-
port, and the fourth chained line is the axial pressure work term.

Conclusions Regarding the Energy Equation

The analysis has suggested that three energy transport processes are likely to be import-
ant in understanding the behaviour of the Ranque-Hilsch energy separation within the
main body of the vortex tube: axial convection by the mean flow, turbulent convection
in the radial direction, and dissipation of kinetic energy. It is also likely that radial con-
vection by the mean flow is important near to the centre-line of the vortex tube, but this
will be ignored partly thanks to a lack of information prohibiting its quantification and
partly because it is not likely to have a dominant effect*.

In the next section, an energy transport equation composed of these processes alone

will be examined in some detail. Before embarking on this investigation, however, it is

“In any case the effects of mean radial convection could be accounted for by an increased or decreased
turbulent convection term.
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worthwhile discussing qualitatively the emerging picture of the energy transport pro-
cesses within the body of the vortex tube.

The reduced energy equation for the body of the vortex tube, where there is minimal
motion in the radial direction could be written as

aT 1 0 aT 1 0P € w OP
w— = — — —o+ —— 1
Yoz rpc, Or lpcpehr (ar pc, Or )] + Cp + pe, 0z (19

In a uniflow tube where the axial velocity w is essentially always positive, then the sign
of the axial temperature gradient is always the same as that of the right hand side. Cool-
ing at the centre as the flow progresses along the tube requires that 2L is negative and
hence that é 9F increases faster radially than 2£, and that the radial turbulent convec-
tion term is the largest. Similarly, any energy transfer to the periphery requires that %

increases more rapidly than pi 9F so that 2L is positive there. While the dissipation term
Cp T zZ
contributes to any heating effect, it does not represent an energy transfer, but merely the

transformation of any kinetic energy separation into a thermal separation.

For a counterflow tube matters are similar, except in the reversed flow central region
where any additional cooling as the cold gas approaches the orifice means that % must

be positive. As the axial velocity is negative here, the right hand side must also be neg-

1 9P

- . aT
7o, 3 increases more rapidly than .

ative to permit cooling, again requiring that

The analysis suggests that a strong radial pressure gradient is necessary to produce
cooling of the central gas, and additional energy transfer to the peripheral gas as the flow
proceeds along the vortex tube. This corresponds well with experimental observations.
Firstly the outwards energy transfer is seen to be confined to a region extending a short
distance axially from the inlets. This region possess the strongest vortices and would be
the most conducive to energy transfer. Secondly the energy transfer is found to increase
with greater vortex strength, and this could be attributed to the consequent increase in
radial pressure gradient. Lastly the counterflow type tube is generally found to be more

effective than the uniflow variety. This would be because the central cold flow in the

counterflow tube passes through the regions with the highest radial pressure gradients
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twice; once just after inlet as it proceeds initially towards the valve, and once after the

flow reversal as it approaches the orifice.

5.5 Analysis

Having examined the magnitude of the terms in the energy equation and identified those
which appear to be important for the Ranque-Hilsch phenomenon, numerical solutions
of certain reduced forms of the energy equation will be presented. As with the majority
of the chapter, the analysis here will only discuss the processes within the ‘body” of the

flow, and spend little time on the difficult inlet region.

5.5.1 Turbulent Conduction Process — Radial Terms Only

The most straightforward, but still useful, simplification of the energy equation is that
obtained by considering only the turbulent radial conduction terms and the reduced dis-

sipation function, that is

1d dr 1 dP v v\’
As there are no axial terms in this equation, investigation of axial effects is prohibited.
Hinze [85] obtained such a relation, and then made the reasonable assumption of simple
radial equilibrium
dP v?
Sy (5.21)

i
to give an expression that relates the temperature distribution to the swirl velocity and

turbulence characteristics only,

1d dT 1 v? dv v\’
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Numerical Method

Equation (5.22) can be solved for a temperature distribution given prescribed swirl ve-
locity and density variations. This was done numerically for several experimentally de-
termined velocity profiles.

The differential terms were discretised using central differences, over a set of finite
nodes spaced radially at positions r; and the result re-arranged to give an expression for
Ti1+1 as a function of the values at the preceding node, :. Distances between the nodes
were much smaller then the spacings between the experimental values. To provide com-
patibility, the experimental values were interpolated to give values at the computational
nodes by fitting a spline through the data.

Integrating from the centre outwards provides a first solution for the temperature dis-
tribution. The radial pressure distribution was calculated by numerically integrating the
simple radial equilibrium expression, and the result used with the equation of state for
a perfect gas to estimate the density. A second estimate for the temperature distribution
was calculated with the new values, and the process iterated until convergence.

Only one boundary condition is required for each of the temperature and pressure
distributions, and in both cases they were enforced at the centre. For the pressure, this
was specified as atmospheric. The temperature at the centre of the vortex was determ-
ined using energy conservation between the inlet to the tube and the particular axial po-

sition under consideration, that is

i hom = 27 / (rhopw) dr. (5.23)
0
where Ay is the stagnation enthalpy. For any set of stagnation enthalpy values, say A,
one could write

hi = ho + Ah (5.24)

where Ah represents the constant correction necessary to A in order for the distribution

to satisfy the energy conservation relation (5.23). Substituting in the energy conservation
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relation gives

Ah =

m

o f
- / (horpw) dr — hoin. (5.25)
mn 0

which can then be used to calculate 4y from kj. From the resulting value of 4, at the
centre of the tube, the corresponding static enthalpy and temperature at the centre my
be calculated. This value was used as the boundary condition for the next iteration. The
axial velocity distribution w (r) was taken from experimental values. This procedure
was applied for both uniflow and counterflow calculations, although in the latter case
it provides an inaccurate central value since the mass flow through the hot tube is not

constant at all stations along the axis.

Results

Calculations were performed for a number of values of ¢, /e. Solutions for the velocity
measurements of Lay [74, 92] at two stations in a uniflow tube, given by the lines in fig-
ures 5.11 and 5.12, can be compared to his results for the stagnation temperature distri-
bution given by the circles. The former figure applies to data taken near to the tangential
inlets and shows that for values of ¢, /¢ near to unity the solution models the measured
stagnation temperature quite well. Data taken near the valve was used for the latter fig-
ure, and again the comparison between solution and experiment is quite good for ¢, /e
close to one.

Evaluation of the solution procedure for a counterflow tube was made using the data
of chapter 3. In view of the inaccuracy of the central thermal boundary condition in this
case, it is not reasonable to expect the values obtained from calculations to compare dir-
ectly with experimental values. The temperature distributions have been normalised
therefore, as the best that can be hoped for is some similarity in the form of the variations.

Figure 5.13 compares the stagnation temperature solutions obtained using the velo-
city distribution close to the inlet nozzles with the experimentally determined variation.
Similar data nearer to the valve is given in figure 5.14. In both cases, the form of the

functions compares quite well with experiment in the outer regions of the tube, but is
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Figure 5.11: Comparison of solutions and experimental values for Lay’s data, table 2 sta-
tion 1. The solid line gives the calculated variation of the stagnation temperature with
radius for value of ¢, /e equal to 10, the dashed line for 1, the dotted line for 0.5, and the
chained line for 0.1. Experimentally determined values of the stagnation temperature
are shown as circles.
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Lay, Station 6, Table 2
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Figure 5.12: Comparison of solutions and experimental values for Lay’s Data, table 2
station 6. The solid line gives the calculated variation of the stagnation temperature with
radius for value of ¢, /e equal to 10, the dashed line for 1, the dotted line for 0.5, and the
chained line for 0.1. Experimentally determined values of the stagnation temperature
are shown as circles.
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Figure 5.13: Comparison of solutions experimental values for counterflow data, z = 0.05
m. The solid line gives results for ¢, /e = 10, the dashed line for ¢; /¢ = 2, and the chained

line for ¢, /e = 0.1. Experimentally determined values are shown as circles.
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Figure 5.14: Comparison of solutions and experimental values for counterflow data, z =
0.6 m. The solid line gives results for ¢,/e¢ = 10, the dashed line for ¢,/e¢ =2, and the
chained line for ¢, /e = 0.1. Experimentally determined values are shown as circles.
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much less satisfactory near the centre. Two reasons might be advanced to explain this de-
parture: firstly the inadequacy of the central boundary condition on temperature in the
counterflow case, and secondly that axial and indeed radial mean convection are likely
to be most significant nearer the centre where the axial and radial velocities approach

the magnitude of the swirl velocity.

Conclusions

A balance between dissipation and radial turbulent convection models the energy sep-
aration in the body of the vortex tube quite well, for experimentally determined velocity
distributions. The calculated energy distributions depend on the ratio of the thermal tur-
bulent transport coefficient ¢; to the momentum turbulent transport coefficient e. Good
agreementbetween experimental and calculated energy distributions is obtained forey, /e
1, which would be anticipated on the grounds that similar transport processes are re-

sponsible for the thermal and momentum effects.

5.5.2 The Turbulent Conduction Process - Radial and Axial Terms

Including the axial terms in the energy equation gives

10 or 1?2 o v\’ oT P
;E lr {Pcpéh (E - a?) H + pe (E - ;) - pwcpa + w@ = 0. (5.26)

The effect of the axial terms on the axial development of the energy separation was in-

vestigated numerically using this equation.

Numerical Method

For the evaluation of the effect of the axial terms, a very simple model of the fluid mech-

anics of the vortex tube was used. Swirl velocities along the tube were calculated from
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an axisymmetric swirl equation derived by neglecting radial velocity and axial diffusion

Jv 0 Jdv v

It was assumed that the axial velocity was always directed in the positive axial direction,
as might be the case in a uniflow tube, enabling the use of a parabolic solution technique.
As a further simplification the axial velocity distribution across the radius was assumed
to be invariant as the flow proceeded along the tube. Finite difference discretisation of
the swirl equation, where : represents node numbers in the axial direction and j in the

radial direction gives

2 (81} v)] [ 2 (81} ’U):|
rels. — = —|pre {5 — =
Zi1 — Zi [” or — Mgt T e Tl

Viy1; = Vi + pot T, . e (5.28)
with
(@) = Jan T T (5.29)
or Pl Fij41 — T, ]

URTERES %(ﬁym +7ij) (5.30)
(%) sy = 510+ (), ] (53D)

and similarly for j — 1, with

1

Tijot = 5 (rij—1+7ij) (5.32)

and so on.

Having obtained a first estimate for the radial distribution of swirl velocity at an axial
position, values for the static pressure across the radius were obtained by numerically

integrating the simple radial equilibrium expression. In discretised form, this expression
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is
. 2
p2+17]vi+1,j (5 33)
Tit1,

Piprjr = Piprj 4 (rinjon — riga )
A ftirst approximation for the density was obtained by using values from the previous
axial node, that is p; ;.

Next, the radial temperature distribution was obtained by solving equation (5.26) el-

liptically. Finite difference discretisation gives

A
Tiy1; = 5 (5.34)
where
v? v? Cp(rpeh)i+1,j+% i+1,5+1
A = ERT - — — ERT - — _
" i1l " i1 Titlj T T
¢ (Tpeh)ﬂ-l,j—% 1,51 N Ar (rp'w)i_l_m e, T
Fit1j = Tit1,i-1 Az
oP
+AT |(r®), 4y + [ rw—— (5.35)
’ dz | . 1.
+5,0
with
2
Vg igl — Vspq i1 :
+1,5+3 i+1,5—5 v
iy = (P, -(3) (536)
Pitri4L = Tig1,5-1 T/ it
9P P :— P
(r'w— = (rw)UM (5.37)
0z i+l TRl T R
Ar = Tigel T il (5.38)
Az = Zi41,5 — <i,j (539)
e (rpeyer) (rpeyer)
TPCpER); 1 541 TPCREL) 1 1 Ar (rpw),, , .c
g+ i+1,j P 1,5 Cp
B=— 2 _ 2 4 ol 7 (5.40)
Fit1g4l — Tit1j  Tik1j — Tiddi-l Az

The newly calculated pressure and temperature values at : + 1 were then used to provide

a better estimation of the density p;;1 j, using the equation of state for an ideal gas. After
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this new estimates of velocity pressure and temperature, still at axial position ¢ 4+ 1 were
calculated using the new density values, and the process repeated until a reasonable de-
gree of convergence had been obtained. The solution then advances to the next axial

position ¢ 4+ 2, and iterates to convergence there.

Results

A solution was calculated for a 0.013 m radius uniflow tube operated on air. The compu-
tation started with a forced vortex of angular velocity 26 000 rad/s upstream, and a uni-
form radial temperature distribution of 298 K. The axial velocity distribution specified
increased linearly from 10 m/s at the centre of the tube to 40 m/s at the periphery, as
shown in figure 5.15. It was assumed that the pressure at the centre of the tube remained
constant at the atmospheric value (101325 Pa), and that the temperature of the gas im-
mediately adjacent to the outer wall of the tube was constant at 298 K. A zero gradient
boundary condition was employed at the centre of the tube for the temperature calcula-
tion. The turbulent diffusivities ¢ and ¢, were taken to be 100 times the laminar value.
Calculations were performed on a regularly spaced grid of 31 points radially and 1000
points axially over a distance of 1 m.

In a calculation as simplified as this it is unrealistic to expect any more than a qual-
itative comparison between experimental and numerical results. Comparisons will be
drawn with both the results of Lay taken in a uniflow tube as discussed earlier, and with
the experimental data from a 0.013 m diameter counterflow tube described in chapter 3.
Figure 5.16 shows the computed variation of the stagnation temperature along the axis
of the tube at four radial positions. There is clear evidence of a reduction in stagnation
enthalpy near the centre of the tube, and a rise towards the periphery over the first 0.2
m of axial length. It is interesting that this distance is comparable to the length of the
region over which the energy separation was found to grow in the experimental study
of the counterflow tube. Details of the development of the radial stagnation temperat-

ure profiles in this region are given in figure 5.17, and over the remainder of the tube in
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Figure 5.15: The axial velocity profile.

tigure 5.18.

By a distance of 0.5 m from the upstream end, the stagnation temperature difference
between the inner and outer regions of the flow has declined substantially, so that there
is little between them. It is notable from figure 5.19 that the swirl velocity has decayed
greatly by this point, such the maximum circumferential velocity is less than half that at
the upstream end, reducing the influence of the pressure gradient in producing energy
transport up the radial temperature gradient.

At the downstream end of the simulated tube, near = 1 m, the stagnation temper-
ature separation appears to have been reversed with the outer regions having the lowest
energy. This is unrealistic, and can be attributed to the inadequacies of the calculation.
Since the swirl velocity has decayed so greatly by this point, any stagnation temperature
separation is attributable primarily to a differences in the static temperature. This can be
seen by comparing the curves for the axial variation of the static temperature, figure 5.20,
with those for the stagnation temperature. Near to an axial distance of 1 m, the two plots

are very similar.
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Figure 5.16: Axial variation of the stagnation temperature at four radial positions, calcu-
lated from the reduced energy equation including axial terms. The solid line gives values
for the centre of the tube, that is zero radius, the dotted line for a radius of 3.9 mm, the
dashed line for 8.2 mm, and the chained line for 10.4 mm.

The calculation has assumed that gas adjacent to the wall of the vortex tube has re-
mained at a constant 298 K, a value substantially below the static temperature of most
of the gas in the body of the tube in this downstream region. It has also assumed that
turbulence levels are constant throughout the tube such that the significance of turbu-
lent thermal conduction due to radial temperature gradients is the same over the whole
domain.

The cooling of the outer region in the simulated tube is due to turbulent thermal con-
vection of energy out of the solution domain, through the constant temperature wall
which effectively acts as a heat sink. Looking at the temperature profiles across the ra-
dius (figures 5.21 and 5.22) makes this clear, as the negative temperature gradient near
to the wall is consistent with conduction through it.

A reversal of the energy separation like this is not found in a real tube for a num-

ber of reasons. Firstly, the tube wall experiences considerable heating such that gas in
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Figure 5.17: Stagnation temperature profiles at stations close to the inlet, calculated from
the reduced energy equation including axial terms. The solid line gives the initial stag-
nation temperature distribution at z = 0, the dashed line at = = 24 mm, the chained line

at z = 49 mm, the dotted line at z = 99 mm and the solid line with symbols at z = 199
mm.
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Figure 5.18: Stagnation temperature profiles at stations spaced along the axis, calculated
from the reduced energy equation including axial terms. The solid line gives the stagna-
tion temperature distribution at z = 0, the dashed line at 0.199 m, the dotted line at 0.299
m, the chained line at 0.499 m, and the solid line with symbols at 1 m.
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Figure 5.19: Swirl velocity profiles at stations along the tube axis, calculated using the
simplified method. The curves are plotted for axial stations 0.1 m apart, with the top
curve giving the distribution at the upstream end » = 0 m, and the lowest curve at the
downstreamend z = 1 m.

contact with it is much warmer than ambient temperature, as assumed by the calcula-
tion. Secondly the conduction occurs in a region of relatively low swirl, and thence, re-
latively low turbulence. As the calculation has assumed uniform turbulence over the
whole domain, it over-exaggerates the turbulence in the downstream, low swirl, region.
Both these factors mean that conduction of heat out through the wall of the vortex tube
has a much smaller influence on the temperature distributions in a real tube than the cal-
culations suggest. In fact most vortex tubes retain a cooler region at the centre all along

their length.

Deductions

The solutions obtained to the energy equation including axial terms indicate that axial
convection by the mean flow influences the heat transfer within the tube in such a way

so as to cause the energy separation to develop as the flow progresses along the tube.
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Figure 5.20: Axial variation of the static temperature at four radial positions, calculated
from the reduced energy equation including axial terms. The solid line gives values for
the centre of the tube, zero radius, the dotted line for a radius of 3.9 mm, the dashed line
for 8.2 mm, and the chained line for 10.4 mm.
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Figure 5.21: Static temperature profiles at stations spaced along the axis, calculated from
the reduced energy equation including axial terms. The solid curve gives the distribu-
tion at the upstream end, z = 0 m, the dashed line at 0.199 m, the dotted line at 0.299 m,
the chained line at 0.499 m, and the solid line with circles at 1 m.

The region of development is small in relation to the overall length of the tube, but is
sufficiently large that maximum separation is found a substantial distance away from
the inlet to the tube. This agrees well, at least qualitatively, with the other information

within the chapter.

5.6 Conclusions

The energy separation found in the Ranque-Hilsch tube can be accounted for by two
phenomena. Firstly, the formation of an approximately forced vortex near the tangen-
tial inlets to the tube initially provides a kinetic energy separation, the peripheral gas
having a much higher velocity than that near the centre. Secondly, the strong radial pres-
sure gradient produced by the forced vortex enables turbulent fluctuations to transport

thermal energy radially outwards and re-enforce the existing energy separation until the
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Figure 5.22: Static temperature profiles close to the inlet, calculated from the reduced
energy equation including axial terms. The solid curve gives the distribution at the up-
stream end, z = 0 m, the dashed line at 0.024 m, the chained line at 0.049 m, the dotted

m.

line at 0.099 m, the solid line with circles at 0.149 m, and the solid line with pluses at 0.199
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thermal and pressure gradients have come into equilibrium.

The effects of the two processes are modified by axial convection and by viscous dis-
sipation of the kinetic energy of the flow to produce the characteristic distributions found
within the vortex tube. Axial convection extends the turbulent thermal transport process
over a significant length of the tube, and is responsible for the observed axial develop-
ment of the energy separation. Viscous dissipation converts the kinetic energy separa-
tion into a thermal separation, and serves to produce a temperature rise in both the hot
and cold streams as their kinetic energy is reduced.

The energy separation is maintained by the flow so long as the swirl is strong enough
to provide a substantial radial pressure gradient to help offset the effects of turbulent
conduction. As the swirl decays, for example towards the end on a uniflow tube, the
energy separation declines.

Such an explanation is consistent with many observed features of vortex tubes, essen-
tially attributing the existence of a radial stagnation enthalpy gradient to the formation
of a forced vortex, and the cooling of the central flow below the inlet temperature to a
turbulent transport process that depends on the compressibility of the fluid. In partic-
ular it would explain why a vortex tube operated on high pressure water produces an

energy separation, but with no net cooling of the central flow (Balmer [80]).



Chapter 6

A Model of Ranque-Hilsch Tube

Performance

6.1 Introduction

In this chapter, a semi-empirical model of the performance of a vortex tube will be de-
veloped, based on the insights of the previous chapters. The intention is to produce a set
of analytical expressions relating the temperature separation produced by a vortex tube

to as many independent variables as possible.

6.2 A Model of Ranque-Hilsch Tube Performance

We wish to relate the performance of a vortex tube to as many independent variables
as are necessary, and in particular the inlet pressure, the inlet temperature and the cold
mass flow fraction. Dimensional analysis has shown that for any particular vortex tube
installation, the functional relationship for the performance as measured by the temper-

ature difference between the inlet stream and the cold stream reduces to

(6.1)

?Tc f ( Pinlet 7 C)
inlet

Poutlet
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The results of Stephan [110] confirmed the validity of this relationship, but gave no in-
sight regarding the form of the expressions that should be employed. Empirical curve
titting was the only means of producing an analytical relation.

Information presented in the preceding chapters will be employed in order to derive
some approximate expressions that can be used to model vortex tube performance, pro-
ceeding in the manner of the scale analysis advocated by Bejan [128]. One thing that has
been clear throughout this work though, is the difficulty of quantitively predicting the

Ranque-Hilsch energy separation; some empiricism will be necessary in any model.

6.3 Assumptions

On the basis of the work so far, the following assumptions will be made about flow in

the vortex tube:

The swirl is the most important feature of the flow

The dominant feature of flow in the vortex tube is the swirling flow near the inlet plane.
This swirl drives the whole of the flow in the tube and is responsible for its peculiar fea-
tures, including the energy separation. The swirl itself is driven by the potential energy

of the compressed air fed into the tube.

A forced vortex is formed near the inlet plane

The swirl velocity profile near the inlet plane is approximately that of a forced vortex,

and can be very roughly represented by

v=0r. (6.2)
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Simple Radial Equilibrium

Radial velocities near the inlet plane are small, such that the flow can be modelled ap-
proximately by the simple radial equilibrium expression

oP  pv?

W —_ T. (6-3)
This cannot be true very close to the inlet nozzles, but will be nearly the case a short

distance away from them.

The axial velocity and swirl velocity fields can be decoupled

The axial and swirl velocity fields can be decoupled in that while the axial velocity field
is influenced by the swirl, and indeed under the assumptions above is driven by it, any
changes in the axial velocity field do not substantially affect the swirl. One implication
of this is that changes in the cold mass flow fraction only affect the axial velocity field
and do not influence the swirl near the inlets at all. In view of the close coupling of the
swirl field and the overall pressure drop across the tube, the cold mass flow fraction will
not have any affect on the ratio P;ic¢ / Poutier, nor will it affect the ‘separation potential” of
the vortex tube'.

For an “ideal” uniflow vortex tube with a purely geometrical means of separating the
hold and cold flows, as shown in figure 6.1, this assumption will be true. In most prac-
tical vortex tubes, the assumption will be only approximately correct. With all the vortex
tubes considered up to this point, the cold mass flow fraction has been controlled by us-
ing a valve at the hot outlet to affect the pressures internal to the tube. Closing the valve,
to increase the cold mass flow fraction raises the internal pressure somewhat, slightly re-
ducing the expansion undergone by the inlet gas as it enters and reducing the magnitude

of the swirl.

'The concept of separation potential will be discussed later in the chapter.



CHAPTER 6. A MODEL OF RANQUE-HILSCH TUBE PERFORMANCE 177

Warm Flow

Inlets\ ~- - T
Cold Flow

Streams separated on a
purely geometrical basis
by means of a cylindrical
tube of adjustable diameter

Figure 6.1: An “ideal” vortex tube.

The static temperature does not vary greatly across the inlet plane

It will be assumed that the radial variation of the static temperature near the inlet plane
is not sufficient to have a large effect on the density. The model will only account for the
influence of temperature on the flow by considering that its effect at the inlet plane can
be characterised by a single value, equivalent to the mass averaged temperature across

the plane. Later, this single value will be related to the inlet temperature of the gas.

The density will of course vary across the radius, but the assumption implies that
this is due mostly to the effects of pressure rather than temperature. Despite the radially
increasing static temperature at the inlet plane, the density increases radially also thanks

to the large pressure gradient.

That a significant proportion of the energy separation develops as the flow progresses
along the vortex tube is important in making this assumption workable. If the whole of
the energy separation was manifest in the static temperature distribution near the inlet

then the density distribution would be significantly altered.
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6.4 Limitations

The model will be subject to two rather more arbitrary restrictions, in addition to the

rational assumptions.

The energy transfer mechanism

The model will mostly be independent of the mechanism of heat transfer, since empir-
icism will be used to estimate the magnitude of the energy separation. Some of the as-
sumptions might be invalidated, however, were an acoustic mechanism similar to that
proposed by Kurosaka responsible, since this would imply that the majority of the en-
ergy transfer occured near the inlet plane. It would also cast doubt on the assumption

that we can characterise the flow by the strength of the forced vortex found near the inlet.

Applicability of the model

As with the result of the dimensional analysis, equation (6.1), the form of the functions
derived in the model will not vary from vortex tube to vortex tube irrespective of any
geometric similarity. In this sense the model has a general applicability.

The empirically determined values, however, will depend strongly on the particu-
lar vortex tube under investigation. It would be anticipated that geometrically similar
vortex tubes have empirical constants that are related, but little account will be taken
of this, as there is insufficient evidence to test the hypothesis. Instead, each vortex tube
must be characterised individually. In this capacity the model is specific to particular

vortex tubes.

6.5 Reformulation

All modelling attempts so far have been constructed in terms of the the cold temperature

drop AT.. It is convenient to develop any model in terms of a reduced heat transfer per
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heat capacity flux defined
qg=p. AT. = Q (6.4)

me,

where () represents the rate of energy transfer from the cold stream to the warm stream.
This notation has the particular advantage that ¢ remains finite at zero cold gas mass
flow fraction, x. = 0, whereas the temperature drop AT, is undefined.

Adopting the assumption that the swirl and radial flows can be partially decoupled,

equation (6.1) can be written

Pinlet

Poutlet

q = Tiniet - J1 < ) - fa (pe) - (6.5)

The significance of this expression is that the pressure ratio P;c¢/ Poutier provides the
energy separation potential, whereas . influences to what extent that potential is ex-
ploited.

For the moment the influence of the pressure ratio will be neglected, and we will write

q = Qmazx - f2 (/’[’C) ) (66)

with ¢, representing the maximum magnitude of the reduced heat transfer over the
range 0 < p. < 1. This is entirely compatible with Stephan’s work, and we will proceed

by improving his result for the dependence of the heat transfer on the value of ..

6.6 The Influence of the Cold Mass Flow Fraction

Constraints on the form of f; (y.)

An expression to represent the effect of the cold mass flow fraction y. on the reduced heat
transfer ¢ is required. It is immediately clear that any function to fulfil this role must be
continuous, monotonic, and have a maximum value of one. The function must also have

a minimum value of zero, which is only achieved when there is no flow separation, that
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Figure 6.2: The quartic relation and the data it models, plotted as the normalised heat
transfer, ¢* against the cold gas fraction p.. The circles represent data taken in the CUED
vortex tubes under 18 distinct conditions.

is when g, = 0, 1.

It would be anticipated that the function would rise smoothly from zero gradient at
the extremities. Empirical observation also suggests that the maximum value should
occur near z. = 0.5. This is not surprising if it is assumed, as suggested in the previ-
ous chapter, that the maximum energy separation possible under any set of conditions
is limited by the maximum sustainable temperature difference between the hot and cold
flows. When p. = 0.5 both streams offer the same heat capacity flux and exhibit a min-

imum overall temperature difference for any given heat exchange between the two.

Realisation
The simplest analytic form which meets the requirements is a quartic in .,

¢ =1 =16 (42— 2+ pit) (6.7)

qmaz
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Figure 6.3: Comparison between the quartic relation plotted as AT, against . and
Stephan’s result. The solid line shows the new function, the dotted line shows a fitted
cubic.

although this has the disadvantage of enforcing symmetry about p. = 0.5. Figure 6.2
shows equation (6.7) along with a considerable number of data points taken from a num-
ber of vortex tubes operating at a wide variety of conditions. The comparison is quite

good, and note also that no empirical fitting is required at this stage.

While there is room for improvement in the function, the correlation between the
quartic and the data points appears to be better than that with an arbitrary cubic with
constants determined by a least squares method. Comparison between the two func-
tions is made in figure 6.3. An additional advantage of the new function is that it can
represent data taken from a wide variety of tubes under different conditions, whereas

an arbitrary function tends to be more specific to a particular tube.
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6.7 The Influence of the Pressure Ratio

To assess the influence of pressure ratio on the value of the heat transfer ¢, we investigate

how the ‘separation potential” ¢,,,, might depend on pressure.

The assumption that the whole phenomenon can be characterised by the forced vor-
tex formed near the inlet plane is very important here. Analysis begins with the 'simple
radial equilibrium” expression (6.3), combined with the swirl velocity distribution in a
forced vortex, relation (6.2) and the assumption that radial variations of the static tem-
perature across the inlet plane are unimportant. Combining with the equation of state

for an ideal gas and integrating radially outwards from the centre produces

P r
dP’ 0%y
/ o = | 6.8)
0

Pcl

where P, is the static pressure at the centre of the vortex tube.

It will be assumed that 7' may be replaced by some characteristic value 7', that is con-

stant with respect to r. Performing the integration gives

P, 0?22
P, = exp (QRT*) . (6.9)

Near to the centre-line of the tube, the pressure is close to the value at the tube outlets,
P, ~ P, This follows from the assumption that the most important feature of the
flow is the swirl near the inlet, and that it is responsible for the major part of any pressure
variations. The swirl velocity near the centre of the tube is very small, and thus it would
be anticipated that the pressure there was dominated by other influences, and in partic-
ular linked with the axial velocity field. Since the axial velocity is generally fairly small,
the pressure changes associated with it are relatively insignificant, and there is little pres-
sure change along the axis of the vortex tube. The static pressure near the centre of the
tube will be very close to that at the tube exit, therefore. This is especially the case in a

counterflow tube, where an exit is positioned very close to the inlets.
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Now consider relationship (6.9) applied near to the cylindrical wall of the vortex tube,
where r = rp and P = P,,, in a region close to the tangential inlet nozzles. The pressure
here will be closely related to the inlet pressure of the gas supplied to the tube, although
the exact relationship will be complicated and heavily dependent both on the design of
the inlet nozzles and the dynamics of the process by which the inlet gas mixes with the

rotating vortex.

Some insight into the interdependence of the two quantities can be obtained from an
approximate analysis. The relationship between the static pressure and the stagnation

pressure at r = rg is the standard isentropic expression

P, ~v—1 =
= (141w 6.10

P stag < —I_ 2 ( )
As the radial and axial velocities are neglected in this analysis, the local Mach number
is M = Qrq/c, where c is the local sound speed. Since a constant static temperature has
been assumed across the vortex, an approximate expression for the sound speed is ¢ =

V7 RT.. Eliminating Q)ro by rearranging equation (6.9), and then substituting for M gives

Pstag P’/‘ ( —1 Pr 7%1
=" 1+—ln< 0)) . 6.11
Pcl Pcl Y Pcl ( )

The local stagnation pressure Py, at the periphery of the vortex will be substantially
less than the inlet (reservoir) pressure thanks to the lossy nature of the mixing process
between the inlet flow and the gas already within the tube. Such losses are particularly
difficult to model, but here we will assume that the loss is related to the difference between

the inlet pressure and the local static pressure such that

Pstag = Lnplet — /B (Pinlet - Pro) (612)

where 3 is a loss coefficient, and thence the relationship between the inlet pressure and



CHAPTER 6. A MODEL OF RANQUE-HILSCH TUBE PERFORMANCE 184

the peripheral static pressure becomes

Pinlet . P’ro —1 PTO 7%1 1
P, Py {[1—'— Y ln<Pcz>] B} 1-p (6.13)

Generally, the inlet swirl velocity in the vortex tube is limited to approximately M =
1, dependent on the design of the nozzles. This seems sensible on physical grounds un-
less the nozzle has been specifically designed as a converging-diverging device. Ahlborn
et al. [129] also suggest that the Mach number in the vortex tube is generally less than
unity, on the basis of a number of experimental measurements.

In this case, the maximum value of the ratio P, /P, is limited to the value obtained

when the inlet velocity is equal the speed of sound, that is ry = ¢. Thus for air at least

(7),.7
PCZ maxr — ¢
and interest should be concentrated on the behaviour of relationship (6.13) over the range

Prg
Pcl

using (6.9)

W2

~ 2.01, (6.14)

1< < 2.01, as illustrated in figure 6.4 for a range of values of the loss coefficient 3
from say 0 to 0.9. The curves are sufficiently flat that the relationship between F,, and
P;1e: could be reasonably modelled as linear for the approximate purposes of this ana-
lysis.

We will write P, ~ P;,;, which willbe arough approxirna’cion2 until the inlet nozzles
begin to choke. At this point P, would remain relatively constant, but in general vortex

tubes operated at pressure ratios sufficiently large to produce choking will not be con-

sidered. Expression (6.9) now becomes

2,.2
Pz'nlet Q L)
~ C

Poutlet

(6.15)

relating the pressure ratio applied across the tube to the strength of the forced vortex

“The symbol ~ is used here in the sense of ‘varies with’. That is the quantity on the left hand side of the
expression varies with the quantity on the right hand in a way that could be very roughly approximated
as linear. The quantities would also be expected to have similar magnitudes.



CHAPTER 6. A MODEL OF RANQUE-HILSCH TUBE PERFORMANCE 185

1 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Pinlet/Pcl

Figure 6.4: The dependence of the pressure at r = ry on the inlet stagnation pressure.
The curves represent a range of values of 3 from 0.1 to 0.9. The figures adjacent to the
curves give particular values.

formed near the inlets.

One of the initial assumptions was that the swirl, as characterised by the angular ve-
locity of the forced vortex formed near the inlet plane, is directly responsible for the en-
ergy separation. As such, it is directly connected with the “separation potential” of the
vortex tube represented by ¢,.... The actual relationship between the separation poten-
tial and the initial vortex is complex. From dimensional considerations we shall write
¢maz ~ Q*/2 on the basis that both quantities represent an energy (flux) per heat capa-
city flux, mc,.

Re-arranging equation (6.15), our expression for the influence of the applied pressure

ratio on the separation potential is

(6.16)

Amaz ™ 2
Ty

RT* i < Pz'nlet )
n .
Poutlet

Clearly this is far from an exact relationship; however it would be hoped that it repres-
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ents the form of the dependence.

Empiricism is necessary to deduce a numerical value for ¢,,,, from the pressure ratio.

Write the previous expression as an equality

Tin e Pzn e
Grae = - = lff In ( o i) 6.17)

where £ is a constant that represents how well the potential of the pressure difference is
converted into a temperature separation, evaluated at inlet temperature 7. for a partic-
ular tube. The arbitrary inlet plane temperature 7. has been replaced by the inlet (reser-
voir) temperature of the gas 7},..;. Under the assumptions here, the two can be related
by means of energy conservation. Neglecting the effects of the axial velocity distribution

in the tube and taking 7\ as the mass averaged temperature across the radius gives

2 2
QQT'?J r%ero —eo 4+ 1

T* = Tzn et — 2 .
g (618)
Substituting for Q%r2 using equation (6.9) applied at r = ry, the relation is
& 0 geq PP
Tinlet
T, = — P (6.19)
L2t (32) £ (1)
where
2 ’/‘g _ ’/‘g 1
() = B (6:20)

re (67"3 — 1)
As figure 6.5 shows, the pressure ratio P,, /P has a significant, but fairly small influence

on the value of 7., /T},.;. While it would be fairly straightforward to model the effect of

the pressure ratio on 7% /7;,.: using a scheme of the form

T,
Tinlet

=1 — (constant)In <];T°) , (6.21)

cl

in view of its fairly small influence, which is in any case only large when the tube ap-

proaches choking, the intentionally vague definition of 7, and the considerable approx-
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Figure 6.5: The dependence of 7, /7},.; on the pressure ratio P,, /P, over the range of
interest from 1 to 2 and the tube radius ro. The upper line was calculated for r, = 0.01
m, the lower r; = 1 m and the intermediate line for 0.1 m.

imations already made, the simple approximation
T* ~ Tinlet (622)

will not introduce great errors. This also provides consistency with expression (6.5).

The ‘tube constant’ £ is determined by plotting values of g, against In (%) ,and
calculating the gradient of the best fitting straight line. This has been done for six tubes
in figure 6.6, where the fit of the straight lines is generally quite good.

The relationship is only valid so long as the inlet nozzles remain unchoked. If chok-
ing occurs, then in general the value of ¢,,,, will no longer be influenced by further in-
creases in the applied pressure ratio. As noted already, supersonic flow does not appear
to exist within the body of conventional vortex tubes, and hence any increase in reservoir

pressure beyond that required for choking cannot influence the flow within the tube. If

supersonic flow is achieved within the nozzles, it must be returned to a subsonic flow by
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Figure 6.6: Evaluation of the tube constant for six tubes, with the solid line representing
the fitted line, and the circles the raw data points. The data employed was sourced as
follows, starting from the top left and then moving across in sequence : (1) Stephan’s
[108] 17.6 mm diameter tube operated on air, (2) Stephan’s tube operated on oxygen, (3)
Stephan’s tube operated on helium, (4) Hilsch’s [4] 8.2 mm diameter tube with 2.6 mm
diameter orifice as portrayed in his figure 2, (5) 26 mm diameter CUED tube operated on
a single nozzle with a 7.5 mm orifice, (6) 18 mm diameter CUED tube operated on two
nozzles with a 7 mm diameter orifice.
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the action of irreversible processes either within the nozzle itself, or as part of the mech-

anism by which the inlet flow mixes with gas already in the vortex tube.

It would be possible to include the choking process explicitly within the model by
allowing £ to be a function of the applied pressure ratio, and fitting a more complex ex-
pression to the data points of figure 6.6. This, however, has the disadvantage of blurring
the interpretation of £ as a figure of merit for a vortex tube. In any case it is wasteful
to operate a vortex tube such that the nozzles are choked. It would be more effective to
divide the separation potential between two unchoked tubes connected in series. Model-
ling of the performance near to choking is not important, therefore. The onset of choking
may as well be considered as a cut off” pressure ratio, beyond which a tube should not

be operated.

By comparison of equations (6.16) and (6.17)

k R
T’/’ef T(Q) ’

(6.23)

suggesting that tube constants of otherwise similar tubes should be inversely propor-
tional to the square of their radii. The data presented in figure 6.6 has not been taken
from similar tubes, so comparison is difficult. Examination at least shows that the smal-
lest diameter tube, that employed by Hilsch, has the largest tube constant, whereas the
largest tube, the 26 mm diameter CUED tube has the smallest constant.

6.8 The Final Relationship

As long as the tube is not choked, the semi-empirical model of vortex tube performance

can be summarised with the two equations

Tin e Pzn e
Gmaz = k- T lft -In <P llt ) (624)
re outlet

¢ = Qoo 16 (2 — 202 + pit) (6.25)
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where ¢ = p.AT. and ¢ = maz (p.AT.). The ‘tube constant’ k£ is an empirically de-
termined value that constitutes an order of merit figure for a particular vortex tube in-
stallation, representing how effectively a vortex tube utilises the separation potential of
compressed air supplied toit. If choking does occur then the performance as represented
by ¢ may be considered as constant with respect to pressure ratio, keeping the value

attained when choking occured.

6.9 Departures from Ideality

6.9.1 Departures from the Form of f, (1)

For some data available in the literature, the variation of ¢ with y. slightly departs from
the analytic form of f; (p.) suggested above. The discrepancies are most obvious in, for
example, Hilsch’s data at low pressure ratios, with the maximum value occuring between
pe. = 0.5and g, = 0.6. No such anomalies are visible in data from the CUED tubes.

Two facts might account for the differences between the approximate analytic func-
tion and some of the data. The CUED tubes were well insulated from their surroundings
and produced relatively small temperature differences. As such they were not prone
to external heat transfer. Hilsch’s tubes by contrast, produced large temperature differ-
ences, and do not appear to have been insulated.

Atlow cold mass flow fractions, there are relatively small quantities of very cold gas
gas leaving through the cold exit. Under these conditions, the cold flow would be partic-
ularly susceptible to external heat transfer while travelling through the cold tube, which
would tend to reduce the measured cold temperature drop AT, and hence the estimated
heat transfer ¢. This would ‘skew’ the curve of ¢ against 1., moving the peak in the dir-
ection of increasing ..

At high values of cold mass flow fraction, say p. > 0.7, gas from the outer regions
of the vortex would be included within the cold flow. Gas near to the periphery of the

vortex, since it is above ambient temperature, would be subject to some external cooling.
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This would tend to reduce the measured values of AT, and ¢ at high values of y., skewing
the curve peak further still towards increased ..

Thus it might be expected that Hilsch’s poorly insulated tubes would produce curves
with peaks at higher values of y. than the well insulated CUED tubes. This does indeed
seem to be the case.

A second fact explaining discrepancies in general might be the interdependency of
. and the separation potential found in real tubes. The analysis has assumed that the
thermal separation effect is directly related to the strength of the inlet swirl, which is
in turn dependent on the overall pressure ratio P;,;c;/ Pouue:- In fact, the swirl strength
will depend on the ratio of the inlet pressure to some “internal pressure” near the inlet
plane, which will be termed F;. No attempt will be made to evaluate F;, but note that
it essentially represents the pressure required to drive the swirling gas axially along the
vortex tube.

Most vortex tubes, employing a valve to regulate the relative amounts of hot and cold
flow, effectively vary the cold mass flow fraction by using the valve to vary the internal
pressure P;. There will a weak relationship between the thermal separation potential of
the apparatus and the cold mass flow fraction ., although its nature is very difficult to
predict.

It would be possible to accommodate such non-ideal behaviour with a more com-
plex function for f. (p.). A number were tried, including higher order polynomials, and
Gaussian functions. None gave a noticeably better fit than the quartic, and all lost its

attractive features of generality and good analytic behaviour.

6.9.2 Non-Conformance to Variation of Performance with Pressure Ra-
tio
In general the dependence of vortex tube performance on the pressure ratio P,/ P, fol-

lows the anticipated form very well. Care must be taken, however, in specification of the

inlet pressure where there might be losses between the reservoir/air supply and the in-
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lets to the tube. If the losses are substantial, then the inlet pressure should be measured
close to the inlet nozzles.

For the CUED vortex tubes, the pressure in the receiving tank of the compressor was
taken to represent the inlet pressure for some measurements. For certain configurations,
the results did not correspond well with the expected form. The dependence of ¢,,,, on
In (Pintet | Pouier) appeared linear, but the fitted line did not pass through the origin. It
was found that subtracting a constant value from the reservoir pressure, that is writing
Piniet = Preservoir — constant, restored the relationship to that expected.

Interestingly, the constant value was the same from case to case, and approximately
equal to the difference between the reservoir pressure, and the reading of a pressure
gauge incorporated in the supply very close to the inlets. It was deduced therefore that
pressure losses in the supply were responsible for the departure from the expected be-

haviour.



Chapter 7

Applications of the Ranque-Hilsch Tube

7.1 Overview

The Ranque-Hilsch vortex tube has certain intrinsic features that make it attractive for
industrial applications. Particularly enticing are its high reliability thanks to the absence
of any moving parts, and its inherent safety as a result of there being no requirement
for external power in the form of electricity or flames. These features suggest potential
for employment in safety-critical environments or in situations where maintenance is
difficult. As pointed out by Bull [130], process equipment in nuclear reactors often has

to meet both criteria simultaneously.

This chapter considers the potential of the vortex tube to perform thermal tasks and
physical separations. In a study of this size it is practical neither to design specific applic-
ations in detail nor to provide a comprehensive review of areas likely to benefit from the
vortex tube. Instead, after a brief consideration of the wider potential, attention will be
focussed on two aspects. Firstly schemes to liquefy gases using vortex tubes will be ex-
amined. Secondly, there will be some consideration of the isotopic separation produced

by the tube, and its potential compared to existing techniques in the nuclear industry.

193
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7.2 Simple Heating and Cooling Applications

7.2.1 Thermal Capabilities
Thermal Power

Any thermal application of the vortex tube will be influenced primarily by the heating
and cooling power available from the device. Estimating the mass flow rate for the 18
mm diameter CUED vortex tube gives a rate of energy transfer from the cold stream to
the hot stream at around 300 watts. This power level is available simultaneously both
in the cold stream to cool a heat sink at ambient temperature, and in the hot stream to
warm a heat sink at ambient temperature. Commercially available vortex tubes from the

Vortec Corp. [79] have thermal powers cited as ranging from 2.9 watts to 1764 watts.

Refrigeration Performance

Performance of simple refrigeration plant is usually characterised by means of the Coef-
ticient of Performance (C.O.P.) defined for the cyclic work-absorbing device of figure 7.1
as

Qa

COP = —. 7.1
= 7

To evaluate the vortex tube as a refrigerator in this manner, it is necessary to devise a

quasi-cyclic system to analyse, such as that shown in figure 7.2.

Figure 7.1: A cyclic work absorbing device.
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Figure 7.2: Quasi-cyclic vortex tube refrigeration plant.

Assuming the isentropic efficiency of the compressor to be 7,5, and that the plant oper-

ates on a perfect gas with constant pressure heat capacity c,, the work input to the system

(%) T 1] } . (7.2)

If the cold space has temperature 7’4, the heat absorbed by the plant is

is
T,
W = mec, -1
MNis

Qa = periney (Ty — To) = perne, (Ta — [Ty — ATY]). (7.3)

Neglecting the pressure drop across the heat-exchanger and assuming 75 = 713, gives

pe (AT, = [Ty = T4])
)7 -

Inserting some typical values for a domestic refrigerator, say n;; = 0.7, T4 = 278K, taking

COP = (7.4)

the ambient temperature to be equal to that of the hot space such that 7} = Ts =293 K,
specifying the operating point of the vortex tube as AT, =35K, y. = 0.7, P,/P, = 3.5,
and assuming an air operated plant with v = 1.4, gives COP = 0.08. Comparing this
to the ideal COP of 18.5 achieved by a reversed Carnot Cycle machine under the same
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conditions shows just how poorly the vortex tube performs as a refrigerator. While the
performance of the scheme could be improved through careful selection of the working
fluid, it is unlikely that performance levels associated with conventional processes could

even be approached.

7.2.2 Applications

The thermal separation provided by the vortex tube finds ready application where there
are modest heating or cooling requirements. Although the efficiency of the device is
poor compared to conventional techniques!, its low capital cost can offset this. It is par-
ticularly useful where there is a ready supply of compressed gas, as in these circum-
stances the heating or cooling required can be obtained almost for free. Suggestions have
included correcting for the aerodynamic heating experienced by thermometers in high
speed aircraft (Vonnegut, [131]), cooling sensitive materials undergoing machining op-
erations (Vortec Corp. [79]), cooling experiments in laboratories dealing with explos-
ive chemicals (Bruno, [132]), use in conjunction with thermocouples to improve the per-
formance of a Peltier refrigerator (Landecker [133]) and temperature control of divers’
air supplies (Baz et al. [134]), manned underwater habitats (Baz et al. [135]) and hyper-
baric chambers (Baz ef al. [136]).

7.3 Gas Liquefaction

7.3.1 Principles of Liquefaction

The fundamental principle underlying all gas liquefaction techniques is to extract heat
from the gasin such a way as to bring its thermodynamic state into the saturation region
of the enthalpy-entropy plane (Mollier diagram). For gases with comparatively high

boiling points, such as the alkane series of hydrocarbons, the heat removal can be ac-

LA typical refrigerator has a C.O.P around 3.
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complished by a cascade of conventional refrigeration circuits. Other gases with boiling
points lying below that of methane?, in what we will term the cryogenic range after Hay-
wood [137], are conventionally liquefied through the cooling induced by some form of
expansion process originating at high pressure.

Asnoted already, the Ranque-Hilsch tube makes a poor substitute for a conventional
refrigerator, and is unlikely to perform well in liquefaction plant based around such schemes.
Attention will be focussed, therefore, on the application of the vortex tube as an expan-
sion engine in plant of the cryogenic design. Quantitative results will be presented on
the assumption that air is the working fluid, although the qualitative conclusions will
apply to any gas including those that liquefy outside the cryogenic range.

The simplest cryogenic plant is the Linde process shown schematically in figure 7.3.

A reciprocating compressor produces a driving pressure of perhaps 20 MPa. The com-

§\Q out

. Precooler
Regenerative

H-X

(1-y)m
—>
‘ym ___\ Liguefied gas \

extracted Inlet mass
flow rate

Throttle

Reciprocating
Compressor

Figure 7.3: Schematic of the Linde process.

pressed gas is cooled to near ambient temperature in the pre-cooler, and then passes

through a regenerative heat exchanger which separates the high and low temperature

2110 K at atmospheric pressure.
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regions of the plant. On reaching the throttle the gas expands and undergoes a temper-
ature change by virtue of its departure from ideal behaviour, as represented by the is-

enthalpic Joule-Thomson coefficient

aT
Hr = (8—]3) . . (7.5)

The Joule-Thomson coefficient is a function of temperature and pressure, and must be
positive for a drop in temperature to occur here. Under usual conditions this require-
ment is satisfied by air. Matters are different for helium and hydrogen plant, where the
gas must be pre-cooled by an external refrigerator before liquefaction through throttle
expansion is possible.

More sophisticated liquefaction schemes are represented by the Claude and Heylandt
processes which seek to improve the expansion cooling process. Partially replacing the
throttle expansion with a preceding resisted expansion increases the temperature drop
by removing energy in the form of work from the gas. As an added bonus that work can

be put to some use, such as helping to drive the compressor.

7.3.2 Liquefaction in the Vortex Tube

The simplest application of the vortex tube to gas liquefaction would be as a supplement
to the throttle cooling of the Linde process, as suggested in figure 7.4. Effectively the
vortex tube would then be employed as an expansion engine extracting work from the
gas, much as in the Claude and Heylandt processes. Unlike those processes however, the
work would be done by one portion of the flow on the other portion, the work receiving
portion being subsequently separated off.

Inclusion of a vortex tube in the Linde process could have a number of advantages.
Most notable is that all gases would effectively have an “artificially enhanced’ isenthalpic
Joule-Thomson coefficient. Expansion would automatically give a cooling effect, and

thence any pre-cooling system would be rendered unnecessary. This saving would have
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Figure 7.4: Linde-type gas liquefaction process incorporating a vortex tube.

to be offset against the reduction in yield produced by venting off a substantial propor-
tion of the inlet flow.

It is quite possible that the throttle could be entirely replaced by a vortex tube. In the
Claude and Heylandt processes, care has to be taken to avoid condensation within the
expansion engine, and the final cooling stage is always a throttle. Such precautions are
not necessary with the vortex tube, which can quite happily cool saturated gases. That
gas liquefaction is possible in Ranque-Hilsch tubes has been demonstrated by Fin'ko
[138] who operated a counterflow vortex tube on air pre-cooled with liquid nitrogen.
His experiments found liquid air running from the cold outlet, although the two-phase
nature of the flow seemed to degrade performance.

Reference to the empirical model developed in the last chapter shows that the thermal
separation performance of the vortex tube varies as the logarithm of the applied pres-
sure ratio. Thus, a greater temperature difference can be obtained from a given pressure
difference by expanding the gas through a large number of vortex tubes rather then a

single tube, although at the expense of a reduced outlet mass flow rate. While in prac-
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tice there would be a limit to the process, as a certain minimum pressure ratio is required
to produce the flow regimes that provide useful separation, at the kind of pressure dif-
ferences typically employed in liquefaction plant expanding the gas through a series of
many vortex tubes would give a cooler outlet flow than ‘blowing’ the pressure available
on a single expansion.

With such a vortex tube cascade the yield of the plant, measured as a proportion of
the inlet mass flow rate would be drastically reduced. It should be noted though, that
many of the "hot streams” leaving the lower tubes in the cascade would be cooler than
the ambient temperature and could perhaps be ‘recycled” in an attempt to improve the
yield. Careful analysis is necessary to determine the practicality of any such scheme, and

the next section presents performance calculations of three possible arrangements.

7.4 Vortex Tube Cascades for Liquefaction

7.4.1 General Principles
Modelling the Vortex Tube

For the purposes of this pilot study, the characteristics of vortex tube performance can be
estimated well enough by the empirical model developed in the previous chapter. No ac-
count was taken there of the degradation of separation performance found in two phase
flows. Scant data makes an empirical analysis impractical, so we will assume here that
temperature separation performance declines linearly to zero as the inlet wetness frac-

tion, x, approaches unity so that the specific heat transfer is given by

q = Qmaz - f2 (/'Lc) : (1 - X) . (76)

In gas liquefaction calculations it is more convenient to measure the heat removed
from the cooled gas rather than the temperature change. The model will be reformulated

in terms of the specific enthalpy change experienced by a perfect gas passing from the
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Figure 7.5: Evaluation of the characteristic tube constant & for Stephan’s [110] tube op-
erated on air. The raw data are shown as circles, the mean fitted line in solid, and 50

percent error bounds as solid lines.

inlet to the cold outlet by writing

@ _ ot (7.7)

Ah, = —
[Tt fle

with @) representing the overall energy transfer between the two streams and r» the inlet

mass flow rate.

Thus the model employed can be written as

Ah. = ®hy, (1 ) 738)
where
f? (,uc) k ( Pinlet )
d = . dn | ———]. 7.9
He Tref Poutlet ( )

with f,(p.) as defined in the previous chapter, and k a constant characteristic of the vor-

tex tube.
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The calculations that follow will assume a vortex tube with performance character-
istics similar to that investigated by Stephan [110], which has a tube constant £ = 10.05
for air. The fitted straight line and raw data used to obtain this value are shown in figure
7.5. Since the the data shows evidence of the inlet flow becoming choked for pressure
ratios greater than 5, the energy separation performance will be assumed to saturate for

such pressure ratios.

Modelling Assumptions

Analysis will be confined to cascades consisting of arrays of identical vortex tubes. All
the tubes will be assumed to operate at the same cold mass flow fraction, and with the
same inlet mass flow rate. In the two cascades where the overall mass flow rate declines
as the gas passes ‘down’ the cascade this latter assumption could be met by a tree ar-

rangement as shown in figure 7.6. Thus the first stage of cooling would involve many
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Figure 7.6: The shape of a vortex tube cascade.

vortex tubes operating in parallel, whereas the final stage would employ only a single
tube.

Under these circumstances all the tubes in the cascade would operate at identical
pressure ratios. Given the assumed similarity of all the flows in the tubes, we would
expect the inlet swirl Mach numbers M,,, to be identical. The outline model of tube per-

formance based on a forced vortex discussed in section 6.7 shows, with equation (6.15),
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that
Pinlet Q2T3
~ exp .
2RT,

7.10
Poutlet ( )

Noting that (2r is the inlet swirl velocity, and subject to the limitations of section 6.7 the

sonic velocity at inlet is ¢ = \/yRT, then

Fin | oM (7.11)

confirming the consistency of pressure ratio.

Certain cascades will incorporate heat exchangers. Modelling will assume unity effectiveness®,

and neglect the pressure drop required to force the gas through them.

Methodology

All possible cascades can be considered globally to have an inlet flow, a desired outlet
flow and a number of waste outlet flows as illustrated by figure 7.7. The overall mass

and enthalpy flux balances are respectively

min = Z mwaste,i + mout (712)

mznhzn = Z mwaste,ihwaste,i + mouthout- (713)

K3

In cascades without recycling these relations combined with the vortex tube model are
sufficient to solve the cascade. With recycling, the overall balances must be solved sim-
ultaneously with balances written for each stage. The particular method of solution de-
pends on the cascade, but in general it is possible to derive a recurrence relationship

between the conditions at adjacent stages and thence solve the overall balances.

3The effectiveness of a heat exchanger is defined as the ratio of the actual heat transfer achieved
between the streams, to the maximum possible heat transfer.
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Figure 7.7: Enthalpy and mass fluxes entering and leaving a cascade.

Optimisation Criterion

We are interested in the performance of the cascades as gas liquefiers. The outlet flow
in diagram 7.7 could be considered as saturated with a wetness fraction x..;. If the con-
densed portion of the efflux has a specific enthalpy %, and the gaseous portion 4, then

the outlet flow has enthalpy
hout = Xouthf + (1 - Xout) hg- (714)

The overall enthalpy balance gives the rate of production of liquid gas as

min (hzn - hg) - E mwaste,ihwaste,i + hg E Muyaste,
7 7
3
hf - hg

(7.15)

XoutMout =

which should be maximised for optimal performance.

Cascades with the fewest numbers of stages give the greatest outlet mass flow rate.
It would be anticipated therefore that best liquefaction performance would be obtained
from those cascades that employ the least number of stages in order to reach liquefac-
tion. In other words adding extra stages to a cascade that already produces liquefied gas
would result in a decreased performance. The increased wetness fraction resulting from

the greater enthalpy removal would most likely be more than offset by the reduction in
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overall mass flow rate.

7.4.2 Simple Cascade

The simplest possible cascade design is to connect the cold outlet of one vortex tube to
the inlet of the next and vent the hot outlets away. Figure 7.8 shows the arrangement
diagrammatically.

For a cascade with N stages the relationship between the inlet and outlet mass flows

is given by
min

= ul. (7.16)

Moyt

The overall cascade pressure ratio can be calculated from

N
<Pf ) _ KPZ ) ] (7.17)
Pout cascade Pout stage

which can be inverted to calculate the stage pressure ratio given an available driving

pressure. Calculation of the outlet enthalpy shows

bost = [ =@ (1—x1)]x [1—=®(1—xa)]x... (7.18)

X[L=®(1—xi)]x...x[1l=®(1—xn)]
although for a cascade that just gives liquefaction all the y; will be zero.

Figure 7.9 shows a series of ‘design’ curves for the simple cascade, giving the lowest
achievable outlet enthalpy as a function the available pressure ratio and the number of
stages in the cascade. At atmospheric pressure, saturated air vapour has a specific en-
thalpy of 205.4 kJ /kg (see Haywood [139]). Assuming an inlet temperature of 298 K, and
an outlet pressure of atmospheric any cascade producing liquid gas must give a ratio of
outlet to inlet enthalpies of approximately 0.26. The design curves show that this is not
reasonably attainable from a simple cascade. The ratio of the outlet and inlet mass flow

rates for a cascade operating at the minimum enthalpy ratio is shown in figure 7.10.
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Figure 7.10: The ratio of outlet mass flow to inlet mass flow for a simple cascade oper-

ating at the minimum outlet enthalpy ratio, as a function of the number of stages. The
relationship is independent of the pressure ratio.
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As anticipated, the cascades give poor outlet enthalpies when few stages are present.
In such cases the stage pressure ratios are very high and the vortex tubes saturate. An
unexpected result is the rise in outlet enthalpy ratio at large stage numbers. When the
number of stages is raised, the stage pressure ratio decreases along with the performance
of each stage. We might expect the small decrease in stage performance to be offset by the
additional thermal separation provided by the extra stages. The addition of extra stages,
however, has the effect that more heat extraction is taking place at a lower temperature
than without them. This destroys any advantage conferred by the extra stage, leading

to a rise in outlet enthalpy with an increasing number of stages.

7.4.3 First Reflux Cascade

The simple cascade is wasteful in as much as some of the hot streams have a cooling
potential compared to ambient conditions. Figure 7.11 represents an attempt to improve
the performance by mixing hot flows with the inlet to the previous stage. The mixed
flows should have similar enthalpies as the path from any inlet flow to the hot exit of
the next stage represents one cooling and one heating.

The hot outlet from the first tube is not used as it has no direct cooling capacity*. The
hot outlet of the second tube is also vented to the atmosphere as it is not significantly
cooler than the flow it would be mixed with. Under certain conditions it can in fact be
warmer than the flow it would mix with. Moreover it will be implicitly assumed in the
following analysis that all mixing occurs with both streams at the same pressure. This
could only be achieved by partially re-compressing the hot outlet flows. Any such com-
pression is not likely to be isentropic and thence would reduce still further any cooling

potential in the hot stream of the second stage. With this one exception, no account will

“It would be possible to expand the hot flow through further expansion engines and thereby produce
some cooling. However this possibility will not be considered here as were vortex tubes employed at least
three further stages of expansion would be needed to give useful cooling. With the numbers of stages
employed here the additional cooling this could provide would be very small. In a cascade with a large
number of stages however, this might provide some valuable extra cooling.
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be taken of the thermodynamic effects of any re-compression required within the cas-

cade.

Calculation of the mass flow rates within the cascade is complicated by the feed back.
Simultaneous solution of mass flow balances for the mixers, the vortex tubes and the

whole cascade with N stages gives

mout ,U*c
. = — (7.19)
Min, 1_|_%.f(ﬂc)_|_£1—_%;chL
where
1— o 1— C2 1— 02—2 1_ CN—S
Flp)=1+-—F L ! ,f) PR f;) n ..+% (7.20)
/’LC /’Lc /’Lc /Lc

Assuming that the hot outlets are pumped up to the pressure of the stream they are

mixed with then the pressure relationship is as for the simple cascade

P, P, N
i — ¢ . 7.21
<Pout ) cascade l <P0Ut ) 5ta96‘| ( )

Simultaneous solution of the enthalpy balance equations is difficult. A considerable

amount of working gives

hout mzn 1 - (1 - /'Lc) fhl
= = (7.22)
. (I—pc) fro £
hln mOUt 1 —I_ foc2h (fa —I_ ﬂ%ch;CN—l)
where
(1—p) frs | (1= pe)? frafna (1= )" frafrafus - - frv—a
fo=1+ +— S o (7.23)
ﬂcfc? ﬂc ch c4 ﬂc ch cdje5 - ch—2
and
fb _ (1 - /’[’C)N_S fh3fh4fh5 ce th—l (7.24)

ﬂiv_4 feafeafes - fen—2
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having defined
fci = 1—-o (1 — Xi) (725)
1_ cler
fu = == J (7.26)
— e

Design curves for the first reflux cascade are shown in figure 7.12 and 7.13, demon-

strating again that the cascade is not reasonably capable of producing liquefied air.
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Figure 7.12: Design curves for the first reflux cascade. The upper curve represents an
overall pressure ratio of 10, and the lowest curve an overall ratio of 200. Other lines rep-
resent increments of 10 in the pressure ratio.
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Figure7.13: The ratio of outlet mass flow to inlet mass flow for a type 1 reflux cascade op-
erating at the minimum outlet enthalpy ratio. The top curve represents an overall pres-
sure ratio of 10, the bottom curve an overall ratio of 200, and intermediate curves are
spaced at increments of 10 in the pressure ratio.



CHAPTER 7. APPLICATIONS OF THE RANQUE-HILSCH TUBE 214

7.4.4 Second Reflux Cascade

Another scheme that attempts to improve on the simple cascade is shown in figure 7.14.
In this case the lower stage hot flows are passed through heat exchangers to pre-cool
the inlet flow in an effort to reduce the number of stages required for liquefaction and
thereby increase the yield. Contrast this to the approach of the previous section, which
attempted to improve the yield by reducing the mass flow loss at each stage. Note that
as with the last design the hot outlets of the first two tubes are not used.

A cascade of N stages has an outlet mass flow rate the same as that of a simple cas-
cade,

Moyt

= ul (7.27)

Min
but at the expense of an increased overall pressure ratio, or a reduced stage pressure ra-
tio. For the calculations presented here, the effect of the heat exchangers on the pressure
drop was neglected, and thus pressure relationships are as for the simple cascade.

An overall expression for enthalpies was not derived in this case. Instead the cooling
performance of the cascade was estimated numerically by chaining together recurrence

expressions for the stage to stage cold flow enthalpies

hC n
; — =AC=1-®(1 — xp-1), (7.28)
c,n—1
hot stream enthalpies
LT R S ) (7.29)
hh,n—l B B 1— He An-1)5 '

and for the enthalpies at the marked nodes in the heat exchanger network

hinoyy _ L= (1= pe) AH (AC)™

7.
hi L — =t (1= pe) (7.30)

The design curves are computed numerically, and are shown in figure 7.15. There is

a very small improvement in the performance of the cascade compared to the simple
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Figure 7.14: The second reflux cascade.
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Design Curves for Reflux Cascade Type 2
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Figure 7.15: Design curves for the second reflux cascade. The upper curve represents
an overall pressure ratio of 10, and the lowest curve an overall ratio of 200. Other lines
represent increments of 10 in the pressure ratio.
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Figure 7.16: The ratio of outlet mass flow to inlet mass flow for a type 2 reflux cascade
operating at the minimum outlet enthalpy ratio. The upper curve represents an overall
pressure ratio of 10, and the lowest curve an overall ratio of 200. Other lines represent
increments of 10 in the pressure ratio.

design. At any given pressure ratio the minimum outlet enthalpy is fractionally lower.
The outlet mass flow fraction at minimum enthalpy, shown in figure 7.16 is also slightly
improved, as the effect of the heat exchangersis to increase the cold mass flow fraction at
which maximum cooling is obtained. In practice this design does not represent a signi-
ficant improvement over the simple scheme. If the heat exchanger pressure drops were
included in the calculations, the performance curves would be considerably worse than

for the simple cascade.

7.4.5 Discussion of Performance

None of the cascades examined are capable of providing liquefied air under reasonable
conditions. Even a drastic increase in the pressure ratio applied across a cascade would

not provide a significant improvement in the liquefaction capabilities. The ‘design curves’
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show that a rule of diminishing returns operates as far as increases in pressure ratio are
concerned. The cascades are however, able to appreciably reduce the temperature of the
working gas, without the use of significant external power sources.

If cascades of vortex tubes are to be of use in liquefaction processes then one of two
conditions must be satisfied. Either the working gas must be much more easily liquefied
than air, or a means of improving the performance of the vortex tube, that is increasing
the “tube constant” £, must be found.

Cascades could perhaps liquefy the heavier gaseous hydrocarbons such as butane,
which requires an outlet to inlet enthalpy ratio of approximately 0.91 when starting at
room temperature, or propane at 0.85. The behaviour of Ranque-Hilsch tubes with gases
other than air is difficult to model, as insufficient data is available in the literature for
evaluation of a tube constant. Experiments by Collins and Lovelace [78] show, at least,
that the Ranque-Hilsch effect is experienced by propane expanded through a vortex tube.

Given the difficulty of modelling vortex tube operation with gases other than air, we
will proceed by assessing the level of vortex tube performance required to produce liquid
air, given an overall pressure ratio of 200. Attempts will then be made to maximise the

liquid production of the cascades at the new performance level.

7.4.6 Performance Required for Liquefaction

The curves of outlet enthalpy against number of stages for the first reflux cascade show a
reduction in enthalpy as the number of stages is increased. In contrast, the other designs
exhibit an optimum number of stages, with any further extensions of the cascade causing
arise in outlet enthalpy. It might be anticipated therefore, that the first reflux cascade was
able to produce the lowest temperatures from the applied pressure ratio, and provide the
easiest route to liquefaction. In principle this is true. Given a pressure ratio of 200, exten-
sion of the curves in figure 7.12 shows that the first reflux cascade can just produce liquid
air from a vortex tube with a characteristic constant of approximately 22. Unfortunately

this requires more than 120 separate stages and produces a negligible outflow.
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The second design of reflux cascade is just capable of producing liquid air from a vor-
tex tube with a constant of 27, using 4 separate stages. In this case the outlet mass flow
(including both liquid and gaseous air) would be 0.012 of the inlet flow. Under the same
conditions the first reflux tube could produce liquid air with 21 stages, and an outlet flow
7x10~* times that at inlet .

Realistic use of a cascade of vortex tubes for the liquefaction of air requires develop-
ment of a tube with at least three times the performance of the tubes encountered in this
study. Existing tubes typically have a constant k£ = 10, whereas liquefaction requires k ~
30. The analysis will proceed by investigating the optimal operating point of cascades

built with such an improved tube.

7.4.7 Optimisation of a Liquefying Cascade

To provide a more realistic solution for the cascades, the presumed performance degrad-
ation with increasing wetness fraction was incorporated into the analysis. This was achieved
by representing the dependence of the enthalpy of saturated liquid %y and gaseous A,
air on pressure as a piecewise cubic polynomial in pressure. The values of the enthal-
pies employed are shown in figure 7.17, along with the piecewise polynomial. Data was
obtained from Haywood [139].

Knowledge of the enthalpy and pressure of the working fluid at any point in a cas-

cade allows evaluation of the wetness fraction using expression (7.14) to give

h— hy

=7 7.31
hg—hf’ (3)

X

having determined A and &, from the pressure and the piecewise polynomial. The cal-

culations were simplified by assuming that the wetness fraction remains constant within

each tube, and thus wetness is only evaluated at the entrances to and exits from tubes.
With the reflux cascades an iterative approach is necessary. First the enthalpy at the

outlet to each stage is calculated assuming that no liquefaction occurs. The values ob-
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Figure 7.17: The enthalpy of saturated liquid and gaseous air as a function of pressure.
The circles show the raw data points taken from Haywood [139], while the solid lines
show the piecewise cubic polynomials used in the cascade calculations. Note that the
arbitrary datum state for zero enthalpy is the enthalpy of saturated liquid air at a pres-
sure of 0.1 MPa.
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tained are used to provide an estimate of the wetness at each stage, and then recalcu-
lated. The process is repeated until the changes in the values from step to step become
insignificant.

Performance of the cascades was assessed by looking for the maximum outflow of
liquefied gas, x.u70u: Under any set of conditions. Plots will be presented giving the
maximum value of this parameter obtainable from both the reflux cascades operated at
overall pressure ratios of 200, 250 and 300. As in previous calculations, it will be assumed
that the cascade outlet is at atmospheric pressure, and the cascade inlet is at room tem-

perature (298 K).

First Reflux Cascade

Figure 7.18 shows the maximum outlet flow of liquid air that could be obtained from a
type 1 reflux cascade as a function of the number of stages in the cascade, and the overall
pressure ratio. Figure 7.19 gives the vortex tube cold mass flow fraction p, at which max-
imum liquefaction occurs, so as to define the operating point of the optimal cascades.
The maximum mass flow rate of liquid air shown is less than 8x10~* times the inlet gas
flow. This can be achieved in a cascade operated over a pressure ratio of 300, with 12
stages and each vortex tube set at a cold mass flow fraction of approximately 0.47.
Figure 7.20 shows that the performance of the cascade depends strongly on the cold
mass flow fractions of the vortex tubes. To achieve optimal performance the cascade

would have to be set up very carefully indeed.

Second Reflux Cascade

Under the range of conditions considered, the maximum mass flow rate of liquid air for
the second type of reflux cascade is shown in figure 7.21 to be approximately 1.2x10?
times the inlet flow of gas. This requires a cascade with 4 stages, operated at an overall
pressure ratio of 300, and with each vortex tube set to a cold mass flow fraction of ap-

proximately 0.36, (see figure 7.22), and represents an improvement over the first design.
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Figure 7.18: Maximum outlet flow of liquefied gas for the first reflux cascade operated at
three pressure ratios, using air and vortex tubes with a tube constant of 30. The top line
was calculated for an overall pressure ratio of 300, the middle line at 250, the bottom at
200. The outflow is at atmospheric pressure. The mass flow of liquid on the vertical axis
is plotted as a fraction of the inlet mass flow rate.
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Figure 7.19: Vortex tube cold mass flow fraction for optimal operation of a type one re-
flux cascade for production of liquefied air. The top line was calculated for an overall
pressure ratio of 300, the middle line at 250, the bottom at 200. The outflow is at atmo-

spheric pressure.
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Figure 7.20: Relationship between the production of liquefied air and the vortex tube
cold mass flow fraction for a type one reflux cascade operated at an overall pressure ratio
of 300. The mass flow of liquid on the vertical axis has been normalised by dividing by
the inlet mass flow rate of air.
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Figure7.21: Maximum outlet flow of liquefied gas for the second reflux cascade operated
at three pressure ratios, using air and vortex tubes with a tube constant of 30. The top
line was calculated for an overall pressure ratio of 300, the middle line at 250, the bottom
at 200. The outflow is at atmospheric pressure. The mass flow of liquid on the vertical
axis is plotted as a fraction of the inlet mass flow rate.

In this case, accurate setting of the cold mass flow fraction is less important for optimal
performance. Figure 7.23 shows the predicted variation of the liquid gas produced with
the cold mass flow fraction. An error of & 8% in the setting of the vortex tubes only pro-
duces a reduction in the liquefaction performance of approximately 15%. For the first

design of cascade, such a setting error reduces the performance by at least 68%.

Conclusions

Both of the two cascades examined in detail have many disadvantages. When deciding
which is the better design, the limitations of the calculations presented must be born in
mind.

In estimating the performance of the first design of cascade, the power required to

drive the internal pumps was neglected. While it might be possible to implement the
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Figure 7.22: Vortex tube cold mass flow fraction for optimal operation of a type two re-
flux cascade for production of liquefied air. The top line was calculated for an overall
pressure ratio of 300, the middle line at 250, the bottom at 200. The outflow is at atmo-
spheric pressure.
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Figure 7.23: Relationship between the production of liquefied air and the vortex tube
cold mass flow fraction for a type two reflux cascade operated at an overall pressure ratio
of 300. The mass flow of liquid on the vertical axis has been normalised by dividing by
the inlet mass flow rate of air.
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cascade in such a manner that the mixing of the flow streams did not require pumps, it
is clear that the actual performance would be significantly less than that predicted.

Calculations of the second cascade design took no account of the pressure losses im-
posed by the heat exchangers, which were also assumed to have unity effectiveness. In-
cluding these imperfections would substantially reduce the cascade performance, prob-
ably removing its small advantage over the first design.

The two cascades, then, have indistinguishable performance. In this case the second
design is to be recommended over the first, thanks to its greater tolerance to errors in
setting up the vortex tubes, and the fact that it requires many fewer stages making it
cheaper to build.

One interesting feature of the optimal productions of liquid air shown in figures 7.18
and 7.21 is that increases in the overall pressure ratio produce substantial improvements
in performance. This would not have been anticipated from the graphs of outlet en-
thalpy, where increases in the available pressure ratio above 200 did not have a noticeable

effect on the result.

7.5 An Investigation of Mixture Separation in the Vortex

Tube

A number of studies have investigated the mixture separation performance of the Ranque-
Hilsch tube. In the following sections a simple model of the separative effectis developed
on the assumption that centrifugation is responsible. The model is assessed by compar-

ison to data available in the literature.

7.5.1 Proposed Mechanism and Model

Consider a binary mixture of gases. Let the component of interest have a mole fraction =
and a molar mass m,, leaving the other component with a mole fractiony = (1 — z) and

a molar mass m,. We will work in cylindrical co-ordinates, account only for variations in
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the radial direction and neglect the effect of any radial velocity. In these circumstances,
Kerrebrock et al. [102] show that the radial flux of the interesting component in a laminar

tflow is given by an equation of the form

Ox Ox
QL:—Dpkﬁ—(@me] 7.32)

where D is a diffusion co-efficient and (g—f) represents the effect of any pressure gradi-
press

ent on the equilibrium concentration profile. At equilibrium, J, = 0, we have

ox ox
g N (g) press . (733)

Thus in laminar flow, any equilibrium concentration gradient is due entirely to pressure

diffusion.

Following Benedict et al. [140] we can derive an expression for the equilibrium dis-

tribution of z in a rotating flow. The partial pressure of the two components is given by

P, = P (7.34)
— yP (7.35)

where P is the local absolute pressure. Neglecting the effect of radial velocities the radial

momentum equation for the vortex tube reduces to

1 0P m v?
Paor - BT+ (7.:36)
where the density has been eliminated by substituting
Lm (7.37)

=T



CHAPTER 7. APPLICATIONS OF THE RANQUE-HILSCH TUBE 230

Applying equation (7.37) to the two components in turn gives

T

Mﬁd’/’l
z(r) = [Pa] e (7.38)
T%%d’/‘l
y(r) = [P(L—z)] e (7.39)

with [Pz] , representing the value of Pz at the centre of the vortex. For any general swirl
velocity and temperature distribution, this expression can be evaluated numerically. Writ-

ing

(ne=my) o2 4
% _, R ogam (7.40)
clearly shows that any changes in mole fraction across the radius are due to the effects
of swirl and the difference in molar mass of the components, i.e. centrifugation.
The flow in the vortex tube is turbulent as we have seen. Under these circumstances,

Rosenzwieg et al. [103] suggest that equation (7.32) should be modified to

(1+9% - (g—) ] (741)

toaccount for the increased concentration diffusion that turbulence would produce, with

J.=—Dp

e representing the eddy diffusivity. The equilibrium solution is now given by integrating

radially
@)@ o
ar turbulent 1 t+e aT‘ press 1 t+e ar laminar

is given by differentiating result (7.38).

oz

where <a
-

These results of course represent equilibrium solutions, the concentration distribu-
tion that would eventually be reached by a two component mixture rotating for ever
with a constant swirl velocity. Such conditions do not exist within the vortex tube, and
so the model must be regarded as a gross approximation. However the axial flow pat-

terns within the vortex tube mean that gas is retained for a long period in comparison to

the rotational period of the vortex. Thus it would be anticipated that the concentration
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distribution at the exit plane of the tube would approach equilibrium.

Accordingly evaluating expression (7.42) using swirl velocity and temperature pro-
tiles obtained near the exit plane of a vortex tube should give an estimate of the physical
separation obtained assuming that centrifugation is indeed the major cause. In the case
of a uniflow vortex tube, the exit plane is easily identified. For a counterflow tube, the
profiles to be used are less obvious. Here it is probably better to calculate bounds on the
separation. Mixture separation must occur in the recirculation region between the in-
let valves and the stagnation point on the axis. Beyond the stagnation point no further
useful separation is possible, the two streams already having been split. Thus, profiles
taken part way along the tube near the stagnation point would give a lower bound on
the separative effect, whereas profiles from near the inlet plane would produce an upper

bound.

7.5.2 Comparison of Model with Experimental Data

In order to test the hypothesis of a centrifugation mechanism, expression (7.42) was eval-
uated numerically using some experimentally determined profiles, and the results com-
pared to Linderstrom-Lang’s experiments [98] on vortex tube mixture separation. Be-
cause of the small diameter (10 mm) and short length of Linderstrom-Lang’s tubes (100
mm), suitable data is difficult to obtain. The experimental apparatus described in chapter
3 has much too large a value of L/D to have any hope of replicating the required con-
ditions. Instead data taken by Lay in a tube with comparable L/D to that required, and
operated at a similar pressure ratio P,/ P,.: ~ 3.5 was employed. While far from perfect,
this does at least satisfy the major requirements for similarity of integrated type paramet-
ers outlined in chapter 3. In all cases the working gas was air.

A major difficulty with the procedure is that Lay’s data was taken in a uniflow tube,
while Linderstrom-Lang worked with a setup that is reminiscent of a counterflow design.
Since firstly, the best that can be hoped for such an elementary model as this is a qualitat-

ive comparison of results, and secondly that the influence of the axial flow on pattern on
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Figure 7.24: The velocity and temperature profiles used to evaluate the mixture separa-
tion. The circles represent experimental values measures by Lay near the entrance to a
uniflow tube, and the crosses values taken near the exit. The solid and chained lines are
interpolating splines. The values that the splines represent were used in the numerical
calculations detailed in this section.

the swirl profiles is not great, it is reasonable to compare calculated bounds on the separ-
ation based on the inlet and outlet swirl profiles found by Lay with Linderstrom-Lang’s

results.

The scaled inlet and outlet profiles based on Lay’s data are shown in figure 7.24. Cor-
responding radial oxygen content distributions calculated using the laminar expression
(7.40) can be seen in figure 7.25. The working gas was air, assumed to be a binary mix-
ture of oxygen and nitrogen with a natural composition as found in the atmosphere. Itis
clear that the decay of the swirl velocity near the periphery does not have a great effect
on the predicted profile. This is consistent with Linderstrom-Lang’s observation that the

central regions of the flow are most involved in the mixture separation.

To estimate the turbulent oxygen concentration a value for the eddy diffusivity, € is

required. We will follow Rosenzweig et al. [103] and assume that the ratio of the turbu-



CHAPTER 7. APPLICATIONS OF THE RANQUE-HILSCH TUBE 233

Molar Fraction of Oxygen in Air — Laminar Analysis

0.215

0.211

0.205

Molar fraction

o
)
T

—— Near Inlet
— - Near Outlet

0.195

019 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised Radius

Figure 7.25: The radial oxygen concentration evaluated using the laminar expression.
The solid line represents the calculation performed with the data taken by Lay near the
inlet to a uniflow tube. The calculation for the broken line used data taken near the outlet.

lent and laminar diffusivities for concentration is the same as the ratio of the diffusivities
for momentum. The required value of ¢ will be equal to the ratio of the turbulent and

laminar viscosities

Keyes [101] investigates the values of eddy viscosity found in vortex tube like flows
as a function of swirl Reynolds number measured near the tube wall and the inlet nozzles.
For a vortex tube of 10 mm diameter with the near inlet velocity profile shown in figure
7.24 the swirl Reynolds number is Reyir & 5% 10°. Examination of Keyes” data, which
shows considerable scatter, suggests that the ratio of eddy viscosity to laminar viscos-
ity at this Reynolds number lies between 70 and 162. Thence we shall assume 70 < ¢ <
162. Figure 7.26 shows the oxygen concentration profile evaluated using the turbulent
expression with ¢ = 162 for the velocity and temperature profiles taken near the inlet.

Notice the enormous reduction in separation compared to the laminar case.

Using the calculated concentration profiles, bounds on the anticipated variation of
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Figure 7.26: The radial oxygen concentration evaluated using the turbulent expression.
The particular curve shown was calculated using the profiles taken by Lay near the tube
inlet, and with a turbulent diffusivity of 162.

the separation effect defined by Linderstrom-Lang as the percentage molar oxygen con-
tent of the hot stream minus the percentage molar content of the cold stream may be
calculated as a function of the hot mass flow fraction. To perform this, a ‘cutting” radius
is selected, and it is assumed that all the gas inside that radius represents the cold flow
that exits near the centre of the tube, while that outside is the hot flow, exiting at the
periphery. The hot flow fraction is calculated by integrating pr over the space between
the cutting radius and the outer wall, and then dividing by the same function integrated
over the entire radius. Similarly the oxygen concentration in each stream is assumed to
be the average mass weighted oxygen concentration over the appropriate portion of the

radius.

The resulting characteristics are shown in figure 7.27 where they are compared to
some of Linderstrom-Lang’s data. The upper bound, shown by the upper solid curve

has been estimated from the combination of variables that give greatest separation, spe-
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cifically the inlet profiles with ¢ = 70. Similarly the lower bound was calculated using the
near exit profiles with ¢ = 162. Note that not all of Linderstrom-Lang’s data is recorded
in the figure since the peculiar design of his device allows the central regions of the flow
to exit at periphery and the outer regions towards the centre under certain conditions.
Data sets where this phenomenon is evident® have been excluded. That the qualitative
variation of the bounds and experimental data is similar, while the magnitudes are at

least comparable indicates that centrifugation is indeed the mechanism responsible.
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Figure7.27: Predicted and experimental variation of separation effect with hot flow mass
fraction. The solid lines are the calculated bounds on the separation effect. The symbols
represent four data sets taken from Linderstrom-Lang [98], figure 4b, who used a 10 mm
diameter counterflow tube, and the broken lines are the interpolating splines.

®Data sets that exhibit this flow inversion are readily identified since the usual separation effect with
the heavier components towards the periphery of the tube appears to be reversed under high hot mass
flow fractions. In other words, observation shows that gas leaving through the peripheral, hot exit is en-
riched in the lighter component, while that passing through the central, cold exit is depleted in the lighter
component. Linderstrom-Lang advances a mechanism that is able to explain this peculiarity.
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7.6 Application of the Vortex Tube to Uranium Enrichment

Now that the mechanism of mixture separation in the vortex tube has been attributed
to centrifugation, the potential of the device to perform useful separation tasks can be
better examined. Of particular interest are the abilities of the tube in separation of the
uranium isotopes U-235 and U-238.

Most industrial scale enrichment processes work with uranium hexafluoride rather
than elemental uranium. The principal advantage of the compound is that it sublimes
at 330 K under atmospheric pressure, providing a gaseous form under reasonable con-
ditions. As isotope separation techniques generally exploit the slight differences in mo-
bility of molecules with small differences in atomic mass, a gaseous material is essential.

A number of centrifugal techniques for enrichment of uranium have been proposed.
Currently the most popular is the gas centrifuge, wherein a rapidly spinning cylindrical
container is supplied with gaseous UFs. A stream enriched in the hexafluoride of U-235
is collected from the centre of the container, and material rich in the heavier U-238 is bled
from the periphery. While a very successful technique, the gas centrifuge is a complex
device requiring a high degree of precision in its manufacture. Additionally the rate of
rotation, and hence the performance of the centrifuge is limited by the yield stress of the
material from which it is made.

‘Steady state” means of centrifugation, such as ajet driven vortex tube flow, represent
an attractive alternative to “proper’ centrifuges thanks to their relative simplicity. That
the gas container does not rotate also removes the constraint imposed on the rate of ro-
tation by its mechanical strength. The physical properties of the working gas and design
of the inlet nozzles, however, limit the maximum speed at which the gas can enter the
vortex tube to the local sonic velocity. For a very heavy gas such as UF; this places a ser-
ious constraint on the rate of rotation®, and thence the separation that could be obtained

in a jet driven centrifuge.

6UFs has a molar mass of approximately 352 kg/kmol. The speed of sound in the material at 350 K is
less than 100 m/s.
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A solution adopted by many proponents of aerodynamically limited separation pro-
cesses is to work with a dilute mixture of UFs in hydrogen (see for example, Geppert
[141]). The sonic velocity in the resulting mixture is raised towards that in pure hydro-
gen. With a 0.04 mole fraction of UF, the sonic velocity would be 492 m/s at a temperat-
ure of 350 K. This is considerably less than the maximum peripheral speed achieved by a
typical centrifuge, which can approach 700 m/s (Whitley [142]). In view of this, and the
high levels of turbulence found within the vortex tube, it is unlikely that it could ever
compete directly with a conventional centrifuge on the grounds of separation efficiency

alone.

7.7 Conclusions

In this chapter we have looked at the utility of the Ranque-Hilsch tube for performing a
number of tasks. While the device has a poor efficiency, its inherent simplicity can make
it attractive where reliability and low-maintenance characteristics are important. Pro-
spects for employment of the tube in gas-liquefaction are less promising, unless the cool-
ing performance can be drastically improved.

Finally, the nature of the reported mixture separation properties of the vortex tube
was investigated. A simple model suggested that ‘straightforward’ centrifugation was
the mechanism responsible. Application of this deduction to the problem of uranium
enrichment hinted that there may be some use for vortex tubes in the nuclear industry.
While the isotope separation performance of a vortex tube is unlikely match that of a
conventional ultra-centrifuge, the considerable reduction in complexity it represents is

appealing.



Chapter 8

Conclusions and Recommendations for

Further Work

8.1 Review

Discussion began with a literature review which highlighted some potentially important
features of the Ranque-Hilsch vortex tube, and outlined a number of mechanisms pos-
tulated to explain its peculiar thermal properties. The lack of agreement between many

investigations was clear.

A series of experiments characterised certain features of the Ranque-Hilsch vortex
tube, and provided some general data on the internal flow. More specific work sug-
gested that the acoustic effects found by some workers were not directly related to the
thermal separation. Development of a Navier-Stokes solver demonstrated that flows in
Ranque-Hilsch vortex tubes were amenable to calculation by conventional techniques.
The results of the program also allowed a little further insight into the nature of the en-

ergy separation effect.

Based on some of the results of these investigations, a model of vortex tube perform-
ance was developed. This facilitated study of the potential of the vortex tube in a number

of thermal engineering applications. The abilities of the vortex tube in nuclear engineer-
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ing were also considered.

8.2 Conclusions

8.2.1 Energy Transfer in Vortex Tubes
Features

In essence the Ranque-Hilsch vortex tube is a means of converting potential energy, in
the form of a pressure difference between the inlet and the outlets of the tube, into a ra-
dial temperature and energy separation. The warm peripheral fluid and the cool central
fluid can be separated using an orifice. Operation with air can provide useful heating
and cooling effects from the outlet streams.

The temperature difference between the outlet streams is dependent on a number of
parameters, especially the fraction of the inlet gas leaving through the cold exit and the
pressure ratio applied across the vortex tube. Other important factors influencing the
performance include the diameter of the tube, the inlet temperature and physical prop-
erties of the fluid.

The most important feature of the flow is the formation of an approximately forced
vortex when the fluid enters the tube. This forced vortex represents the ‘interface’ between
the inlet gas flow and the flow within the vortex tube. As such it characterises the entire
flow field and is responsible for many of its features. An approximately forced vortex is
maintained over much of the vortex tube, although the profile decays as the fluid pro-
ceeds along the tube.

The stagnation and static temperature differences between the central and the peri-
pheral flow are seen to grow as the gas proceeds along the initial regions of the tube.
Some distance along, when the swirl has decayed significantly, the stagnation temperat-
ure difference starts to decline.

Flow within the vortex tube appears to be highly turbulent, especially near the inlet
nozzles. On larger scales though, the flow is mostly steady and predictable. The only
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exception to this is the bubble like vortex breakdown in the counterflow tube that marks
the onset of the central region of reversed flow. Breakdown can occur in some uniflow
tubes, producing a small region of recirculation. Apart from these regions there is little
secondary flow in the radial direction, and hence fluid that remains at the periphery on

inlet tends to stay there, and similarly for fluid that moves straight to the central regions.

Mechanisms

Two ‘thermodynamic” separations can be identified in the vortex tube, a thermal separ-
ation in the sense that the peripheral fluid obtains a higher static temperature than the
central fluid, and an energy separation in that the peripheral fluid also has a greater stag-
nation enthalpy than the central fluid. Of the two, the latter is the more interesting, since
the thermal separation can in part be explained by the dissipation of the kinetic energy
part of the stagnation enthalpy separation through the action of viscosity.

The primary feature of the vortex tube that produces the radial energy separation is
the initial formation of a forced vortex. This immediately represents a radial separation
of kinetic energy, with the fastest, high kinetic energy gas at the periphery, and the slow
low energy gas at the centre. It appears that the inlet flow is not adiabatic, and thus the
static temperature distribution is not that which would be associated with an isentropic
expansion of the inlet gas into the inlet plane. Instead there is some evidence that there
is a thermal temperature separation formed within the inlet plane, with the temperature
increasing towards the periphery. This behaviour appears in part to be due to the prox-
imity of the inlet nozzles to the orifice in the case of a counterflow tube, and to the closed
end of the tube in a uniflow case. Details of the behaviour of the gas in the inlet plane
warrant further investigation.

Dissipation of the kinetic energy of the forced vortex through viscous mechanisms is
responsible for much of the thermal separation within the vortex tube. A substantial role
is played by the action of turbulent eddies in the radial pressure gradient however. In re-

gions where the radial pressure gradient is large, that is where the swirl is strongest, com-
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pression of eddies as they move radially outwards through the pressure gradient per-
mits the transport of heat radially outwards, even against the temperature gradient. This
serves to supplement both the stagnation and static temperature separations by cooling

the central gas and heating peripheral gas.

When combined with the effects of convection by the the mean flow in the axial dir-
ection, the turbulent heat transfer mechanism can account at least qualitatively for the
observed behaviour of the stagnation enthalpy field in the vortex tube. In particular the
turbulent heat transfer appears to be responsible for the region close to the inlet nozzles

where the stagnation enthalpy separation increases as the flow progresses down the tube.

Beyond the region in which the stagnation enthalpy increases, the radial pressure
gradient induced by the swirl is no longer sufficient to permit a thermal flux directed up
the radial temperature gradient. The stagnation enthalpy separation now starts to de-
cline, as turbulent conduction now transports heat down the temperature gradient and
into the cooler central flow. Decline of the stagnation enthalpy separation occurs over
a considerable length of tube however, as the radial pressure gradient is sufficient to re-
duce the propensity for thermal transport towards the centre until the swirl has decayed

greatly.

The static temperature difference between the inner and the outer gas may continue
to increase even beyond the region in which the heat flux is directed radially outwards.
This is caused by the viscous dissipation taking place in the periphery of the flow, in-
creasing the temperature of the peripheral flow faster than that at the centre. No fur-
ther cooling of the central flow is possible in this flow regime however. Subject to the
heat transfer condition at the wall of the tube, both the central and the peripheral gas
become warmer through the action of turbulent heat transport and viscous dissipation
as the swirl velocity decays until uniform temperature profiles are achieved. In practice,

very few vortex tubes are long enough to achieve this.
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8.2.2 Modelling of Vortex Tubes

A model relating the thermal separation performance of vortex tubes to the fraction of
cold gas and to the applied pressure ratio has been developed. The precision of the model
was not particularly good, but the result is sufficient for engineering purposes.

The flow internal to the vortex tube can be modelled adequately using the conven-
tional techniques of computational fluid dynamics. Some aspects of the energy separa-
tion are also captured, but accurate modelling will require further careful study of the

turbulent transport process at work within the tube.

8.2.3 Applications of Vortex Tubes

Ranque-Hilsch vortex tubes have potential for gas-liquefaction applications. Without
improvements in the performance of the device, the potential is limited to providing
cooling assistance in conventional techniques. With increased performance, then for air
at least, liquefaction schemes consisting of cascades of vortex tubes and heat exchangers
become feasible.

The mechanism behind the radial separation of components of the inlet gas of dif-
fering masses has been established as ‘simple’ centrifugation. This information allowed
numerical investigation of the utility of the vortex tube in the separation of uranium iso-
topes. It can concluded that the vortex tube is capable of providing useful isotopic sep-

aration, and is worthy of further development.

8.3 Recommendations for Further Work

8.3.1 Energy Separation
Flow Measurements

The application of modern non-intrusive measurement techniques to the Ranque-Hilsch

vortex tube would provide useful information regarding flow patterns within the tube,
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the existence of any organised disturbances within the tube that cannot be detected acous-
tically, and the nature of the turbulence in the flow. This latter aspect would be of con-
siderably wider interest, since developments in the modelling of turbulent rotating flows
are partially restrained by the lack of experimental information with which to make com-
parisons. The extra information would also allow a better quantitative estimate of the
contributions to the temperature separation made by the various mechanisms highlighted
in this thesis.

As noted in earlier chapters, the use of optical techniques in cylindrical geometries
is not without problems. The difficulties are definitely surmountable, but might turn
such measurements into a substantial project by themselves requiring commitment of a
number of expensive resources.

One region of particular interest not examined experimentally in this study, is the
interaction of the flow from the inlet nozzles with the gas already in the vortex tube. The
inlet region appears to be of fundamental importance in the energy separation produced
by the tube, so a clearer understanding of the behaviour of the working gas in this region
would be extremely useful. Moreover the mixing of the inlet streams with the body of the
gas seems to be the largest source of entropy generation in the tube, manifesting itself as a
loss of stagnation pressure. Reduction of the mixing losses might well assist in providing

the increase in performance that would make many applications of the tube viable.

Empirical Modelling

Three aspects of the empirical model would benefit from attention. Firstly, the form of
the function f; (¢.) given by equation (6.7) could be reformulated either as an expression
derived more directly from an understanding of the energy separation mechanisms, or
as an empirical function that accommodates the asymmetry introduced by ‘non-ideal’
vortex tubes. Secondly the choking apparently experienced by vortex tubes at high pres-
sure ratios should be better defined and accommodated within the expressions for the

thermal separation ‘potential” of the inlet gas. Finally, the relationship between the ‘tube
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constant” and the tube radius suggested by the analysis, expression (6.23) should be given

greater experimental attention.

8.3.2 CFD

The finite volume Navier-Stokes solver developed for outline numerical investigation
of the vortex tube could be improved in numerous ways. Two particular aspects are the
provision of a turbulence model more suited to swirling flows, such as a Reynolds’ stress
model, and the addition of “full” compressibility. To dwell on the code’s many deficien-
cies, however, is to miss the point of the work. The code provides a minimally adequate
tool for investigation and the basic design of vortex tubes. A more more useful extension
would be to employ the code in an extensive numerical investigation of various influ-

ences on vortex tube performance.

A more sophisticated numerical study of the significance of the turbulent heat trans-
port mechanism outlined in chapter 5, using the finite volume code, would be useful in
assessment of its importance. The heat transfer against the temperature gradient could
be simulated in principle by allowing a spatially variable Prandtl number computed loc-
ally from values of the pressure and temperature gradients. Any contra-gradient trans-
port would be represented by a negative Prandtl number. To ensure that the results of
any calculations were quantitatively correct, there would have to be careful correlation

of the calculated turbulence parameters with those found experimentally.

8.3.3 Gas Liquefaction

Further study of the potential of vortex tube cascades for gas liquefaction would be worth-
while if the efficiency of vortex tubes can be increased. Otherwise, there is scope for ad-

ditional work on the incorporation of vortex tubes in existing liquefaction techniques.
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8.3.4 Mixture Separation

Any development of the vortex tube as a mixture or isotope separation device requires a
detailed investigation of the internal concentration distributions. As with the flow meas-
urements, it is difficult to see how intrusive techniques could provide more reliable in-
formation than is currently available. Furthermore ‘on-line” composition analysis, such
as would be required in order to traverse the radius of a vortex tube, presents consider-
able difficulties.

For these reasons, an optical method of concentration measurement has been devised.
An outline proposal is discussed in appendix D, which overcomes both of the disad-
vantages of intrusive methods. Fortunately optical concentration measurement does not
have the same problems with vortex tube flows that beset optical velocity investigations.

A more complete numerical study of mixture separation within the tube, performed
by discretising the governing equations of mass transport, equation (based on the mass
flux expression 7.41) and incorporating them within the Navier-Stokes solver would be

interesting.



Appendix A

Heat Transfer From the Cylindrical Wall

A.1 Introduction

This appendix investigates the magnitude of the heat exchange by natural convection
between the uninsulated hot and cold tubes of the CUED installation and the surround-
ing atmosphere. The effect of any heat exchange on measurements of the wall temperat-
ureis assessed. Numerical results are given for installation A only, as this is the tube most
affected by any errors induced through convection. The extension to the other tubes is
straightforward.

Wall temperature data presented in the main part of the thesis were corrected using

the result of this analysis (equation A 4).

A.2 Analysis

If the outer edge of the cylindrical wall of the vortex tube is at a temperature 7, and is
surrounded by a still atmosphere at a temperature 7};,,, then the heat flux from the wall
is given by

q = QI/A =h (Tw - Tatm) (A]_)

246



APPENDIX A. 247

where £ is the empirically determined heat transfer coefficient, and the area of the outer

wall of a section of tube of length [ is A = 277,,..{. Applying the Fourier law
¢=—-\VT (A.2)

to the heat flux by conduction through the wall shows that the rate of conduction through

a section of wall of length [, inner radius r; and outer radius r,y., is

=27l (Tw - Tinne'r)
Q2 = :
In (router/ri)

(A.3)

Tiner s the temperature of the inside of the cylindrical wall, which is assumed to be

identical to that of the gas in contact with it.

At steady state, ()1 = @), and thence

hr,
Ti'rme'r = Tw + % (Tw - Tatm) In ('router/ri) 5 (A4)
or
Tinner - Tw Nu Tatm Touter
T, _T<1_ Tw)ln< r) (A

A.3 Evaluation

From Holman [143], the heat transfer coefficient for a horizontal cylinder cooled by nat-
ural convection is given by

Nuy = f(Gry, Pry) (A.6)

where ; denotes a parameter evaluated at the film temperature. For the 26 mm vortex

tube we have

Prandtl number Pry;=0.7
Grashoff number Gry = 0.04,
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and thence from the graph of values in Holman, the Nusselt number is Nu = 0.708. Typ-
ically, T4, =292 Kand T, = 313 K, giving 7},.,.., = 314.3 K, and a percentage error of

less than 0.5% in using 7', as a measure of the gas temperature at the wall.



Appendix B

Assessment of Errors and Calibration of

the Intrusive Measurement Probes

B.1 Basic Principles

The results of the flow field mapping in the main text include detailed estimates of the
likely uncertainty field in each case. In order to calculate such estimates, it is necessary
to have a clear, quantitative picture of the abilities of the equipment employed. This
appendix gives the estimates of uncertainty used in the calculations, outlines how they

were obtained, and assesses their correlation.

In general it is very difficult to account for the systematic errors in any experimental
work. The aerodynamic probes employed to map the flow field, however, were extremely
prone to systematic errors, thanks to their necessarily ‘fiddley” construction. A simple
calibration procedure was used to determine their systematic errors, and the appendix

begins by outlining it.
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B.2 Procedure and Results for Probes

B.2.1 Equipment

The probes were calibrated in the flow in a vertical square duct of cross sectional area
40000 mm?. Flow was induced in the duct by means of a suction fan at its top. This had
the advantage of ensuring that the stagnation temperature and pressure at the centre of
the duct remained constant at atmospheric temperature and pressure under all flow con-
ditions, since effectively the atmosphere was acting as the high pressure reservoir for the
flow. A throttle at the exhaust from the fan allowed the flow velocity to be varied, and
a static pressure tapping in the wall of the duct enabled its numerical evaluation. Axial
flow speeds could be varied from 0 m/s to 60 m/s. While the velocities found in the
vortex tubes were outside this range, it was considered that, providing careful consid-
eration was given to the inaccuracies involved, the equipment could provide a useful

assessment of the deficiencies of the probes.

Two aspects of the behaviour of the probes were investigated. Firstly, the variation of
the reading given as a function of the angle of yaw between the probe and the flow. With
the stagnation pressure and temperature probes, the maximum reading should be ob-
tained when the probes face directly into the flow, and with the static temperature probe,
a minimum reading. By using a sensitive manometer and plotting the readings of the
measured quantity as a function of the indicated angle of the probe, any offset between
the actual and indicated zero yaw position, due to manufacturing errors can be estim-
ated. The flatness of the graph around zero yaw can also be used to estimate the likely

precision of the probe in service, and an estimate of the error in the offset.

Secondly the variation of the calibration parameters with flow velocity was meas-
ured. In most cases this was not found substantial, and the particular parameters em-

ployed are described in the individual sections that follow.
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B.2.2 Combination of Repeated Readings in the Evaluation of System-

atic Errors

Estimates of random error are determined in general by highly subjective means. As
such, there is little point in taking a number of estimates of the value, and then attempt-

ing to achieve a ‘better’ result by averaging.

Determinations of systematic error are usually much more “scientific’. It is conven-
tional, as here, to perform an experiment with the apparatus under test subjected to a
well known input, and measure the difference between the response of the apparatus
and the well known value. In such cases it is worthwhile to attempt to improve know-

ledge of the systematic error by repeating measurements.

Since all experiments are subject to random error, repeated measurements of system-
atic error will rarely agree. This raises the issue of how to combine such discrepant re-

peated measurements'.

The best approach seems to be to adopt a Bayesian philosophy. Essentially we begin
by using our experience of the situation to set some likely, all encompassing limits on the
systematic error. In the case above, determining the angular offset of a stagnation pres-
sure probe, I might be sufficiently confident of my skill in drilling to state that there was
no misalignment greater than + 10°. This estimate is used to establish a prior error prob-

ability, which is a probabilistic statement of the initial error estimate. For our stagnation

Lor in other words, how to evaluate the error in the error.
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pressure probe, the prior probability would be a rectangular? distribution thus:

(0) = L —10<60 <10
= 0 otherwise.

When a measurement of the systematic error is taken, say ¢, with error o, it is combined

with the prior information using Bayes’ theorem,

p(01]0)pa ()
J (01| 0)pa(0)do

all §

p(0]6:) =pi(0) = (B.2)
A little explanation is in order. The new information is encapsulated in p (4, | #), which
represents the probability of obtaining the new reading, #; on the basis of the prior prob-
ability and the error estimate. Itis termed the likelihood and often given the symbol L (6, | 6).
The new, composite, probabilistic understanding of the parameter is represented by the

subject of the Bayes’ theorem expression, namely p (¢ | 6).

If further readings are taken, the newly calculated distribution becomes the prior.

Thus for the second reading, (6, o3),

(01 01,05) = py (0) = — 20210 P (0)

IO o

?Under the Bayesian interpretation, probability density functions represent the degrees of belief we have
that the parameter in question adopts any particular value. As such, there is no requirement that p.d.f.s
are formulated on the basis of a statistically sound frequency measurement experiment, and in effect, we
are allowed to invent p.d.f.s arbitrarily. In any case, whatever distribution we hypothesise will eventu-
ally be overwhelmed by the effect of repeat readings. Clearly, though, it is preferable to adopt a density
function that offers minimum bias towards the final result, especially in any experiment that has a limited
number of readings. In this capacity, the selection of a rectangular distribution as the prior, is far from
arbitrary, and is usually referred to as Bayes” Equal Likelihood Postulate. Shannon’s theory of information
entropy demonstrates that, with only range information available, a rectangular distribution has the least
bias towards the final outcome of all possible distributions. Where more information is available, for ex-
ample, a mean and standard deviation, other distributions become appropriate. See Smith [144] for more
information, and details of the distributions applicable in other cases.
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and so on, giving the general expression

po(0) = p (6] 61,05, ....0,) = é [ﬁL(ej | 9)] pe (0). (B.4)

where (' is a normalisation constant to ensure that the sum of the probabilities is unity.

Using the final p.d.f., a new estimate of the value of the systematic error parameter,
6, and the uncertainty in its value can be calculated as the mean, < § > and standard

deviation, o4 respectively, where
< >= / 0 p, (0) db, (B.5)

and

oo = J / (0— < 0>)? p,(0) db. (B.6)
Returning to the investigation of the offset of the stagnation pressure probe, Shannon’s
information entropy methodology shows that the correct form of likelihood distribution
to represent measurements of a location parameter §;, and its error o; is normal. When

performing the calibration of the probe, we employ

L)) =L ) (B.7)

This methodology provides a consistent and rigourous means of combining repeated
estimates of the yaw offset in the aerodynamic probes, yielding both a value for the off-
set, which can be easily corrected for in the vortex tube readings, and an estimate of the
uncertainty in this offset which must be accounted for in any overall error assessment. In
practice, the effort involved was only beneficial in calibration of the stagnation pressure
probe. Since this probe was used to determine the direction of the flow, a good know-
ledge of its errors was desirable to provide uncertainty information with regard to the

flow angle. With the other two probes, knowledge of their offsets was only required for
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their subsequent alignment with the flow. As neither probe was particularly sensitive to
direction, a single measurement of their offsets was satisfactory, and there was no need
to estimate uncertainty.

Such a procedure, can of course be applied to an attempt to evaluate a location para-
meter. It would have been possible to apply the Bayesian technique to every reading
taken during the vortex tube flow mapping. This would be a complicated operation,
with a very small additional benefit in comparison with the technique employed in the

main text.

B.2.3 Stagnation Pressure Probe

The stagnation pressure probe was found to give essentially accurate measurements of
the stagnation pressure at all flow velocities, so long as it was aligned with the flow. Pre-
cision of the stagnation pressure readings was thence entirely dependent on the mano-
meter connected to the probe.

In the worst cases, for large pressure differences, a vertical mercury filled manometer
with a millimetre scale was used. This would give an uncertainty in the readings of ap-
proximately £ 70 Pa. For small differences an alcohol manometer at a shallow angle
was used. In principle this should give a much more accurate result, but often the liquid
column would fluctuate, raising the absolute error to around + 20 Pa.

Combining the results of the Bayesian offset measurement, with the limitations of the

protractor employed, suggested that angular measurements were accurate to + 3°.

B.2.4 Stagnation Temperature Probe

The stagnation temperature probe had a recovery factor of By = 0.6, with an estimated
error of + 10. There was no detectable variation of this parameter for flow speeds greater
than 10 m/s, or over the amazingly wide angular range of +30°.

Considering the observed fluctuation of readings, and the specification of the ther-

mocouple, the precision of the temperature readings was estimated to be 0.5 K.
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B.2.5 Static Pressure Probe

The static pressure probe was found to give an accurate value for the static pressure
across the range of flow velocities. In this case the precision of the readings is dictated
by the manometer used. The comments made for the stagnation pressure probe apply
here.

The probe was found to be insensitive to yaw angles of £10°, essentially eliminating
any errors due to misalignment. This was unsurprising, as the probe had been specific-

ally designed to be tolerant to angular misplacement.

B.3 Estimates of Other Errors

There are two other sources of uncertainty in the experiment not yet considered. Firstly
fluctuations in the reservoir conditions could have caused errors. However, there was no
evidence of rapid fluctuations in the supply, and no means by which to measure them,
had they been present. Slow (period > 10 minutes) fluctuations were observed, but steps
were taken to correct for them.

A second source of uncertainty are errors in the spatial positioning of the probes. The
axial position of the holes through which the probes were inserted was measured with
a metre rule, giving an uncertainty of + 0.5 mm. Radial positioning was dictated by the
traverse equipment, which allowing for setting up errors also had an uncertainty of +
0.5 mm.

It would be quite possible to convert the positional errors into errors in the meas-
ured variables, namely the stagnation pressure, stagnation temperature, static pressure
and flow angle. Such a step has not been taken here, as it is a relatively simple matter to
maintain both the positional and measurement error fields concurrently. When, for ex-
ample, fitting a curve to data relating the stagnation temperature variation to the radial
position, the two fields can be accommodated by specifying the (known) uncertainty in

both co-ordinates. To attempt reduce the two error fields to one here would only serve
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| Description | Symbol | Value ||
Mach Number Calculation
Static and stagnation pressure Ky, , 0.5
Stag. Temperature Calculation
Mach no. and recovery temp. Knrrp, 0.1
Mach no. and recovery factor Kur 0.5
Recovery factor and recovery temperature | Kr, g 0.5

Table B.1: The correlation coefficients between the uncertainty estimates.

to complicate matters unnecessarily.

B.4 Correlation Coefficients

The error analysis employed in the main text requires estimates of the correlations of the
uncertainties in the measures variables. Table B.1 gives the numerical values of the cor-
relations used in the calculations of the flow Mach number and the stagnation temperat-
ure. Both these quantities are calculated directly from measured data. Other quantities
of interest, in particular the static temperature, the flow velocity, and the density, depend
to some extent on previously derived values. In these cases, the correlation coefficients
between the variables cannot be given explicitly, as they vary with the values involved.
Instead these correlation coefficients have to be calculated according to the standard ex-

pression for the correlation of two random variables, a, and b

cov (a, b)

Pt = \/va,r (a) var (b)

(B.8)

In all the cases considered, the error in each variable can be divided into two parts, one
tully correlated with the other variable V/, and one completely independent /. As such

the correlation coefficient expression can be reformulated as

_ Product of fully correlated errors

K,, = (B.9)

Product of total errors
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or
ViV
(= B.10
‘e TR E, (B.10)
where
ok = VP41 (B.11)
o2 = V24 (B.12)

recalling that o,; represents the absolute error in the itk component of the observables
vector x, and K zi; 18 the correlation coefficient relating the " and ;" components. The

following expressions for the remaining correlation coefficients are obtained:

Mach number, M, and stagnation temperature, 7}

9T, .
(8M)XUM oM

Ky, = (B.13)
OMOT,
Mach number, M, and static temperature, 7’
8T,
af) oM oM
Kur = (55). (B.14)
opMOT
Pressure, P, and static temperature, 7'
aT aM
v 2D op-0Op
Kpr = <8M)x <3P )x ) (B.15)

opoT
The differential terms are obtained as the results of the linearisation process described
in section 3.5.3. The x appended to each implies that the expression are to be evaluated

at the current value of the observables matrix x.



Appendix C

The Numerical Tests Carried Out on the
Code

C.1 Introduction

In this appendix the numerical tests used to asses the vorticity-streamfunction solver are
discussed in more detail than was possible in the main text. In all cases some quantitative

indication of the results is given.

C.2 The Driven Cavity Laminar Benchmark

Thebasics of the vorticity-streamfunction solver were tested using the driven cavity prob-
lem. This problem is commonly used as a benchmark for numerical routines, and is quite
well suited to the vorticity-streamfunction technique. It is a two dimensional laminar
problem, in Cartesian co-ordinates, and thus tests only the vorticity and streamfunc-
tion solutions. Although the other solutions presented in this thesis are in cylindrical
co-ordinates, a generalised orthogonal co-ordinate system was employed for the discret-
isation of the vorticity and streamfunction equations. The result of this is that the code is

able to solve the vorticity and streamfunction equations in Cartesian co-ordinates, and
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thus deal with the benchmark. Note that none of the other variables solved for were
dealt with using the generalised system, as it was often advantageous to take advantage
of the particular symmetry of the cylindrical co-ordinates system.

The driven cavity problem consists of the solution of the flow field within a two di-
mensional square cavity with a moving wall, as shown in figure C.1. To provide the
boundary conditions, the streamfunction 1 is constant on all walls and is generally taken
as zero. The vorticity at each wall was computed from a second order condition (see for

example Gosman [50]).

Moving Wall
Velocity =1
Segment of .
compuational | = | Stationary Walls
grid
Onall walls:
yY=0 T~
w computed X,
from internal
points
X1
sidelength =1

Figure C.1: Computational domain for the driven cavity problem.

A solution for the driven cavity problem at a Reynolds number Re of 1000 computed
by the vorticity-streamfunction solver on a regular 21x21 grid is given in figure C.2. The
contours represent streamfunction values. Comparison with a solution computed by
Gosman [50] on a 13x13 irregularly spaced grid shown in figure C.3 is reasonable. The
differences can probably be attributed to the inadequacies of the contouring techniques

used in each case’.

In order to test the degree of dependence of the solutions obtained on the grid em-

!Gosman estimated contours by hand. The contours for the vorticity-streamfunction solution were es-
timated using the Matlab package. The contouring technique it employs is not described in detail.
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Figure C.2: Result using the vorticity-streamfunction solver to solve the square cavity
benchmark problem on a 21x21 grid.

Figure C.3: Benchmark solution to the square cavity problem. Computed on an irregu-
larly spaced 13x13 grid.
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ployed, a further computation of exactly the same benchmark was performed on a grid
of 91x91 points. The result is given in figure C.4, and has a reasonable correspondence
to the previous solution. Again uncertainties about the contouring routine make com-

parison difficult.

Figure C.4: Result using the vorticity-streamfunction solver to solve the square cavity
benchmark problem on a 91x91 grid.

C.3 The Rotating Pipe Flow Laminar Benchmark

To test the combined performance of the swirl and vorticity-streamfunction solvers, a
benchmark comprising the solution of a strongly swirling flow in axisymmetric cylindrical
co-ordinates was computed. Figure C.5 defines the problem. Further details are given in
Silvester et al. [2], from where the benchmark solution in figure C.6 is taken. Two charac-
teristic features are presented. Firstly the variation of axial velocity on the centre-line of
the tube as a function of the axial distance from the origin of co-ordinates, and secondly
the profiles of axial velocity at stations near to the origin. Computed solutions will be
presented in a similar format, although discrepancies in the positions of the grid nodes
mean that it will not always be possible to give the velocity profiles at exactly the same
axial positions used by Silvester. In these cases a series of profiles near the origin will be

given, and the reader left to judge the results qualitatively.
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Centre-Line
Conditions
Rotating Pipe u=0, v=0 Stationary Pipe
dw/dr=0 only ahalf
plane computed.
0 | ] / '
Angular (- R Q[GZ
Velocity R [}

Inlet conditions:
Forced Vortex v=r Q
Fully developed axial velocity
profile w=2Vo (R %)2
R2
Radial velocity calculated
to suit

Qutlet conditons:
Assumeflow is
fully developed.
(i.e. zero gradient)

Figure C.5: Definition of the laminar swirling benchmark problem.

Figure C.6: Benchmark solution of the laminar swirling flow problem. Taken from Sil-

vester ef al. [2].
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A solution of the benchmark problem provided by the vorticity-streamfunction solver
using a 91x91 regularly spaced grid, is presented in figure C.7. Comparison with the
benchmark solution shows a good qualitative similarity and a fair quantitative one. The
area of recirculation caused by the decay of the swirl is resolved quite well. Results using

a 31x31 grid (figure C.8) also stand comparison.

Centreline Axial Velocity : 28/10/93-2 Axial Velocity Profile near z=0 : 28/10/93-2
T T < T T

0.8]- - Dashed Lines for z>0
Solid Lines for z<0

~ i i i i i i i i
-5 0 5 10 15 -3 -2 -1 0 1 2 3 4
Axial Distance Velocity

Figure C.7: Calculated solution of the laminar swirling flow problem using a 91x91 reg-
ular grid.

Further calculations were performed using a 31x31 irregularly spaced grid, with a
concentration of nodes in the region where recirculation is present. The results are shown
in figure C.9. As with the preceding calculations, the qualitative comparison is respect-

able, but the magnitude of the axial velocity reversal on the centre-line is over estimated.

To assess the mass conservation properties of the vorticity-streamfunction solver, the
axial mass flow rate at each of the stations shown in figure C.9 was calculated. The out-
come is given in figure C.10, where the normalised axial mass flow rate is plotted against
axial distance from the origin of co-ordinates. The variation in mass flow rate was found
to be of the order of 2.9 percent, a fairly small error, and adequate for the purposes of this

work.



APPENDIX C. 264

Centreline Axial Velocity : 28/10/93-1 Axial Velocity Profiles near z=0 : 28/10/93-1
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Figure C.8: Calculated solution of the laminar swirling flow problem using a 31x31 reg-
ular grid.

C.4 The Turbulent Pipe Flow Benchmark

Assessment of the implementation of the two-equation turbulence model was achieved
though calculation of a turbulent pipe flow, without any swirl. The benchmark solution

was taken as the results of Nikuradse’s quasi-analytical solution (see Schlicting [125]).

The numerical problem considered is defined well by Elkaim ef al. [52]. A fluid enters
a circular channel with a uniform velocity profile and a Reynolds number based on the
channel diameter of 1.1x 10°. At the exit, the flow is fully developed, and it is this velo-
city profile that is considered. Under such conditions Nikuradse gives the axial velocity

profile as

5= ()

where R is the maximum radius and W the maximum axial velocity.

Figure C.11 gives the numerical results and the analytic solution. The comparison is

quite good, and verifies the performance of the turbulence model.
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Centreline Axial Velocity : 28/10/93-3 Axial Velocity Profiles for z<0 : 28/10/93-3
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Figure C.9: Calculated solution of the laminar swirling flow problem using a 31x31 ir-
regular grid.
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Variation of Normalised Axial Mass Flow Rate
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Figure C.10: Variation of calculated axial mass flow rate.
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Figure C.11: Comparison of the axial velocity profile provided by the vorticity-
streamfunction solver with the solution of Nikuradse [125] for a turbulent pipe flow. The
points show the numerical solution, while the solid line gives Nikuradse’s result.
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C.5 Conclusions

The basic function of the numerical solution of the vorticity-streamfunction method em-
ployed in the main text has been validated. Calculations of a driven cavity problem, and
of the swirling flow in a pipe gave fair comparisons with benchmark solutions.

The turbulence model was assessed through a calculation of the fully developed ve-

locity profile in a turbulent pipe flow. Results compared well with classical solutions.



Appendix D

Outline of a Proposed Experiment for
Further Investigation of Centrifugation

Effects within the Vortex Tube

D.1 Introduction

This appendix outlines a possible experimental procedure that could be used for further
investigations of the isotope separation abilities of the vortex tube. Only basic ideas are
given, and certainly there would be much development work necessary in order to pro-
duce a working system. Successful implementation could provide the foundation for a

comprehensive experimental study of isotope separation within the vortex tube.

D.2 Concept

The procedure envisaged employs optical means to deduce concentrations of compon-
ents, using the phenomenon of fluorescence. When a molecule is irradiated by light of a
suitable frequency, it absorbs a portion of the incident energy. A fraction of this is sub-

sequently re-emitted in all directions as fluorescence.
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If particular regions of a multicomponent gas are illuminated so as to cause one of its
components to fluoresce, the intensity of the fluorescence in any particular region will be
related to the concentration of that component there. This can be applied to a flowing gas
in a transparent vortex tube to obtain some indication of the component concentrations
at various points within the tube. The best approach would appear to involve illumin-
ating whole cross-sections of the vortex tube with sheets of light and view them from a
perpendicular direction as indicated in figure D.1. Illumination could be provided by a
laser with a cylindrical lens or possibly by an illuminated slit, although care would have
to be taken to ensure that the beam was not too divergent axially and illuminated a nar-
row plane.

A permanent record could be made photographically or with a high speed video cam-
era. In the latter case a frame grabber could be used to digitise the picture and allow its
analysis by computer. Since the fluorescence frequency differs from the illumination fre-
quency, a filter designed to pass only the fluorescence frequency inserted between the
observing device and the vortex tube would greatly improve the quality of the images.

The method will produce a concentration ‘map” of the particular component within
each cross-section. To make quantitative deductions it is necessary to understand the
factors that influence molecular fluorescence.

The frequency of the radiations is affected by a number of parameters, including the
flow conditions. This is not the primary concern here, but it is worth noting that it al-
lows the measurement of certain flow properties, including pressure and temperature
by fluorescence.

Of particular interest is the intensity of the emissions, which is dependent only on the
number density of molecules, and the intensity of the incident radiation. The intensity of
the fluorescence of a group of molecules varies in a complicated manner with increasing
illumination intensity until a saturation value is reached. Above this level, the fluores-
cence intensity is independent of the illumination intensity. In such cases, the intensity
of the fluorescence is directly proportional to the concentration (number density of mo-

lecules) of the component concerned, which is clearly beneficial. It is thus important to
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Figure D.1: The illumination arrangement for concentration measurements.

ensure that the illumination over the entire field of interest is greater than the satura-
tion value. Account must be taken of the fact that the illumination intensity falls as the
light passes through the flow field and is absorbed. Means of doing this are discussed
by Huller and Hanson [145].

A further matter for consideration is which component of the flow through the vortex
tube is the best to attempt to fluoresce. Unfortunately none of the components of air will
fluoresce within the visible spectrum, rendering most optical recording techniques im-
practical. It is preferable to introduce a tracer gas which will fluoresce visibly. This has
the added advantage that it would be possible to control the inlet concentration of the
tracer to provide the greatest contrast between the low and high number density sites.

A good choice for the tracer is 2-3 butanedione, commonly known as biacetyl. It can
be excited relatively easily, has a fairly wide fluorescence spectrum, is non-toxic and re-
latively inexpensive (see Epstein [146]). The only disadvantage is that it is an inefficient
fluorescer, and may be difficult to capture on film. Analternative isiodine which provides

a much greater light output, but imposes operational difficulties thanks to its mild tox-
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icity. Its use in an open circuit arrangement, as is common with vortex tubes, would

probably be impractical.



Appendix E

A Novel Method for Estimating the
Velocity Distribution Across the Radius
of a Vortex Tube

E.1 Background

Good experimental measurements of the flow parameters, particularly the fluid velocity,
are difficult to obtain in a vortex tube for two reasons. Firstly inserting any probe into the
tube substantially alters the flow pattern. Secondly the high levels of turbulence cause
large and rapid fluctuations in several of the flow parameters simultaneously. Standard
intrusive techniques have been developed to levels of sophistication that can overcome
the second problem, but can be cumbersome and difficult to implement. Velocity meas-
urement using a hot-wire, as an example, requires the use of two probes for accurate res-
ults: one to measure velocity fluctuations and a second to compensate for temperature
fluctuations. This makes for a bulky arrangement causing considerable disruption to the
flow. Additionally, inaccuracy is introduced thanks to the inevitable distance between

the probes, and the whole assembly proves inconvenient.

Arguably the easiest flow parameter to measure in the vortex tube is the stagnation
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pressure. This requires only a very small pressure probe, aligned such that its ‘measur-
ing hole’ faces directly into the flow and connected to a manometer. There is compar-
atively little flow disruption, and as a bonus, the variation of the measured stagnation
pressure as the probe is rotated can be used to deduce the approximate flow direction.
The probe is quick and easy to use.

A method has been developed which allows velocity information to be deduced from
radial traverses of the stagnation pressure in the vortex tube. While the accuracy of the
method is not high, it does seem to provide a valid quantitative picture of the flow in the
vortex tube. The stagnation pressure based method is quick and easy to use, making it

convenient for rough investigations.

E.2 Theory

Assume that the swirl velocity across the radius of a vortex tube varies according to the

relation

v=Fkr" (E.1)

where v is the swirl velocity, £ and n are unknown constants to be determined, and r is
the radial distance from the centre-line. This may seem a rash assumption, but examina-
tion of swirl velocity profiles available in the literature suggests that the departure from
this simple analytical expression is small outside of the boundary layer on the curved
wall. Holmann and Moore [18] in particular are able to model the vortex in a tube very
well with a comparable expression.

Now assume that the flow is in simple radial equilibrium, such that the centripetal force
required for circular motion is provided exclusively by the radial pressure gradient. Thus
a force balance gives ) )

P v
== PT (E.2)
with P the static pressure, and p the density. This is a reasonable assumption, as is dis-

cussed in the main text, so long as the swirl velocity is the major component of the velo-
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city vector and the effects of the axial and radial velocities can be neglected.

Eliminating v gives

oF _ pkr(@n=1), (E.3)
ar
Solongasn #0,ie. 2n — 1 # —1
P r
/ dP' = / pk2r2n=1) gyt (E.4)
Pu 0
which yields
P—Py= ”—kQ(r%) (E.5)
™ )

where P, is the static pressure at the centre-line.

Stagnation pressure for incompressible! flow is defined as

1
Fo=P+ §pv1€20t (E.6)

where F, is the stagnation pressure and v, is the absolute fluid velocity. If « is the angle
between the direction of flow and the axis of the vortex tube, and w is the axial compon-

ent of velocity, then by simple geometry

tan(a) = v (E.7)
w
and thence
1, 1
= — . E.
Py=P,+ 5PV (1 + tan(oz)) (E.8)
Using equation (E.5) gives
k? 2n 1
P0=Pd+ph— ULy : (E.9)
2 n tan()

IThe approximate method assumes that the flow is incompressible. As such, its success or otherwise
could be regarded as an indication of the importance of compressibility in the fluid mechanics of the vortex
tube.
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We can use this expression to deduce the swirl velocity distribution from the information
produced by a stagnation pressure probe in a number of ways. The most general will be
described, but note that all the techniques are based around determining the value of n

in equation (E.9).

The stagnation pressure probe tells us the radial variation of stagnation pressure F;
and flow angle «. Let us assume for this calculation that the static and stagnation pres-
sures on the centre-line of the tube are both equal to atmospheric pressure F,,,. This
need not be the case - the “exact’ values can be determined fairly easily from experiments

- but it makes the argument easier.

Putting
AP =P, — P, (E.10)
equation (E.9) can be written

2

} =In (%) + 2n In(r). (E.11)

1
In(AP) — ln{— +1+
n tan(«)

We have to use an iterative method to determine n. Let our initial estimate be ny, so

1
In(AP) — ln{— + 1+

nq tan()

} =In (kaQ) + 2n In(r). (E.12)

Plotting In(AP)—In {nl—l +1+ o } against [n(r) should yield a straight line with inter-
cept In (%) and gradient 2n. We can take this value of the gradient to be a new estimate
for n, which we can term n,. Using this n, we can recompute our values and gain a new

estimate n3, continuing to convergence.

With a “good” value for n we can estimate the swirl velocity distribution using equa-

tion (E.1), and then get the axial velocity with relationship (E.7).
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Figure E.1: Measured variation of stagnation pressure and flow angle across the radius
of the 26 mm diameter vortex tube. P* represents a normalised stagnation pressure.

E.3 Method and Results

To estimate the velocity distribution across the vortex tube radius, it is first traversed
with a stagnation pressure probe, recording values of stagnation pressure and flow dir-
ection at anumber of points. The flow direction is determined by rotating the probe in its
holder and looking for the maximum reading, indicating that the probe is then pointing

directly upstream.

The theory outlined above is unable to estimate the velocity distribution across the
boundary layer on the cylindrical wall. Thus there is no need to perform a detailed tra-
verse of this boundary layer. Figure E.1 shows a typical result for the variation of stag-
nation pressure and flow angle across a vortex tube radius, taken near to the inlets of the

26 mm diameter tube operated at a relatively low pressure.

To deduce the velocity distribution, » in equation (E.9) must first be determined. The

iterative method outlined above is used, taking an initial guessed value for » to evaluate
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the right and left hand sides. Plotting the values gives a straight line, the gradient of
which gives a better estimation of n, and the process is repeated until convergence.

The method was applied to the data of figure E.1. Five iterations were required to
produce converged values for the parameters » and k, the progression of which is given
in table E.1. The result of the first iteration is given in figure E.2, with the upper diagram
showing the function fitted to the raw data, and the lower diagram the corresponding

estimated swirl velocity distribution. Figure E.3 gives the final result.

Raw fit
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70 T T T

© 60 b
S
550 r b
340t |
Q
>
=301 N
=
D 20t i
10 Il Il Il Il Il
0 0.002 0.004 0.006 0.008 0.01 0.012
Radius / m

Figure E.2: First fit to the pressure/angle derived data discussed in the text. The
upper diagram shows the fitted function compared to the raw data represented by
the circles. Note that the vertical axis, labelled “Term’ represents values of in (AP) —
in {% + 1+ @} The lower diagram gives the corresponding swirl velocity distribu-
ion.

Iteration 1 2 3 4 5
n 1 0.5251 | 0.5306 | 0.5305 | 0.5305
k 9662 | 716.7 | 618.0 | 619.7 | 619.7

Table E.1: Development of the vortex parameters with iteration.
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Raw fit
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Figure E.3: Fifth and final fit to the pressure/angle derived data discussed in the text.
The upper diagram shows the fitted function compared to the raw data represented by

the circles. Note that the vertical axis, labelled ‘Term’ represents values of in (AP) —

In {% + 1+ #} The lower diagram gives the corresponding swirl velocity distribu-

. (@)
tion.
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E.4 Further Evaluation of the Technique

To test the reliability of the method further, it was used to estimate swirl velocity distri-
butions using stagnation pressure and angle data available in the literature for already
known swirl velocity distributions. Calculations were performed using two sets of data
taken by Lay [74], who investigated the flow within a uniflow vortex tube of approxim-
ately 25 mm diameter. Results will be presented for data taken near the inlets, where the
swirl velocity is comparable to a forced vortex, and near the valve where the swirl has

decayed greatly to produce a much ‘flatter” distribution.

E.4.1 Data From Near the Inlet

Figure E.4 shows the resultant fitted function and swirl velocity distribution based only
on data taken inside a radius of 18 mm and therefore well outside the cylindrical wall
boundary layer. Five iterations were performed, and the comparison in the lower dia-
gram between the estimated function, given by the solid line, and the experimental val-
ues calculated by Lay, given by the circles, is very good.

If the approximate solution is extended to include all the data points taken by Lay,
as given in figure E.5 then the result is less good, although still useful. The reduced per-
formance in this case is a result of the fact that the data now extends into the cylindrical
boundary layer. The simple analytic expression for the swirl velocity cannot cope with

this region.

E.4.2 Data From Near the Valve

Comparison between the approximate solution for the swirl velocity and the true experi-
mental values for data taken near to the outlet of Lay’s uniflow tube is made in the lower
diagram of figure E.6. Even though the fitted function in the upper diagram matches the
data well, the method produces a very poor result for the swirl velocity. This is due to

the fact that the velocity distribution differs greatly from a forced vortex, and cannot be
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Figure E.5: Resultant fit after five iterations, for data from Lay [74], table 2, station 1,
using all data up to the cylindrical wall. The circles represent Lay’s data points, and
the solid lines give the fitted functions. The upper diagram shows the fitted function
compared to the raw data represented by the circles. Note that the vertical axis, labelled
‘Term’ represents values of In (AP) — In {% +1+ m} The lower diagram gives the
corresponding swirl velocity distributions.
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Figure E.6: Resultant fit after five iterations, for data from Lay [74], table 2, station 6,
using all data up to the cylindrical wall. The circles represent Lay’s data points, and
the solid lines give the fitted functions. The upper diagram shows the fitted function

compared to the raw data represented by the circles. Note that the vertical axis, labelled

“Term’ represents values of In (AP) — In {% +1+ tanl(oz) } The lower diagram gives the

corresponding swirl velocity distributions.

modelled by the simple expression. Essentially the boundary layer on the cylindrical

wall extends almost all the way to the centre of the tube here.

E.5 Conclusion

The novel method of estimating the velocity distribution across the radius of a vortex
tube based only on information from a stagnation pressure probe is a useful means of
quickly investigating the flow.

There are two major limitations. Firstly the method assumes an analytic form for the
swirl velocity distribution. Secondly, the method cannot calculate velocity distributions

within the boundary layer on the cylindrical wall. Both problems can be addressed to
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some extent. It is essential to assume an analytic expression for the swirl velocity distri-

bution, but the form of that expression is not limited to the simple form,

v=kr" (E.13)

used here. More complex expressions can be incorporated into the theory, and this is
an area worthy of investigation. There is also potential for extending the technique to
deal with the flow within the boundary layer, by making use of the commonly used as-
sumption that the static pressure is constant across that layer. Again this requires further
work — while in principle possible, the difficulties involved in measuring the stagnation

pressure in the boundary layer may make the results too inaccurate to be useful.
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